【題目】如圖所示,正方形ABCD對角線AC所在直線上有一點O,OA=AC=2,將正方形繞O點順時針旋轉60°,在旋轉過程中,正方形掃過的面積是

【答案】
【解析】解:∵OA=AC=2,∴AB=BC=CD=AD= ,OC=4,S陰影= + =2π+2,
所以答案是:2π+2.
【考點精析】本題主要考查了正方形的性質和扇形面積計算公式的相關知識點,需要掌握正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2)才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,點O為原點,點A的坐標為(﹣6,0).如圖1,正方形OBCD的頂點B在x軸的負半軸上,點C在第二象限.現(xiàn)將正方形OBCD繞點O順時針旋轉角α得到正方形OEFG.

(1)如圖2,若α=60°,OE=OA,求直線EF的函數(shù)表達式.
(2)若α為銳角,tanα= ,當AE取得最小值時,求正方形OEFG的面積.
(3)當正方形OEFG的頂點F落在y軸上時,直線AE與直線FG相交于點P,△OEP的其中兩邊之比能否為 :1?若能,求點P的坐標;若不能,試說明理由

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線L:y=ax2+bx+c與x軸交于A、B(3,0)兩點(A在B的左側),與y軸交于點C(0,3),已知對稱軸x=1.

(1)求拋物線L的解析式;
(2)將拋物線L向下平移h個單位長度,使平移后所得拋物線的頂點落在△OBC內(nèi)(包括△OBC的邊界),求h的取值范圍;
(3)設點P是拋物線L上任一點,點Q在直線l:x=﹣3上,△PBQ能否成為以點P為直角頂點的等腰直角三角形?若能,求出符合條件的點P的坐標;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為更新果樹品種,某果園計劃新購進A、B兩個品種的果樹苗栽植培育,若計劃購進這兩種果樹苗共45棵,其中A種苗的單價為7元/棵,購買B種苗所需費用y(元)與購買數(shù)量x(棵)之間存在如圖所示的函數(shù)關系.

(1)求y與x的函數(shù)關系式;
(2)若在購買計劃中,B種苗的數(shù)量不超過35棵,但不少于A種苗的數(shù)量,請設計購買方案,使總費用最低,并求出最低費用.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,向一個半徑為R、容積為V的球形容器內(nèi)注水,則能夠反映容器內(nèi)水的體積y與容器內(nèi)水深x間的函數(shù)關系的圖象可能是( 。
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,⊙O的直徑為AB,點C在圓周上(異于A,B),AD⊥CD.

(1)若BC=3,AB=5,求AC的值;
(2)若AC是∠DAB的平分線,求證:直線CD是⊙O的切線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,點A,B的坐標分別為(-1,0),(3,0),現(xiàn)同時將點A,B分別向上平移2個單位,再向右平移1個單位,分別得到點A,B的對應點C,D,連接AC,BD,CD.

(1)求點C,D的坐標及平行四邊形ABDC的面積.

(2)在y軸上是否存在一點P,連接PA,PB,使=2,若存在這樣一點,求出點P的坐標,若不存在,試說明理由.

(3)點P是四邊形ABCD邊上的點,若△OPC為等腰三角形時,直接寫出點P的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(1)如圖1,已知ABC,以AB、AC為邊分別向外作正方形ABFD和正方形ACGE,連結BE、CD,猜想BE與CD有什么數(shù)量關系?并說明理由;

(2)請模仿正方形情景下構造全等三角形的思路,利用構造全等三角形完成下題:如圖2,要測量池塘兩岸相對的兩點B、E的距離,已經(jīng)測得ABC=45°,CAE=90°,AB=BC=100米,AC=AE,求BE的長(結果保留根號).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,直線y=﹣ x+n交x軸于點A,交y軸于點C(0,4),拋物線y= x2+bx+c經(jīng)過點A,交y軸于點B(0,﹣2).點P為拋物線上一個動點,過點P作x軸的垂線PD,過點B作BD⊥PD于點D,連接PB,設點P的橫坐標為m.
(1)求拋物線的解析式;
(2)當△BDP為等腰直角三角形時,求線段PD的長;
(3)如圖2,將△BDP繞點B逆時針旋轉,得到△BD′P′,且旋轉角∠PBP′=∠OAC,當點P的對應點P′落在坐標軸上時,請直接寫出點P的坐標.

查看答案和解析>>

同步練習冊答案