【題目】如圖,⊙O的直徑為AB,點C在圓周上(異于A,B),AD⊥CD.

(1)若BC=3,AB=5,求AC的值;
(2)若AC是∠DAB的平分線,求證:直線CD是⊙O的切線.

【答案】
(1)

解:∵AB是⊙O直徑,C在⊙O上,

∴∠ACB=90°,

又∵BC=3,AB=5,

∴由勾股定理得AC=4


(2)

解:證明:

∵AC是∠DAB的角平分線,

∴∠DAC=∠BAC,

又∵AD⊥DC,

∴∠ADC=∠ACB=90°,

∴△ADC∽△ACB,

∴∠DCA=∠CBA,

又∵OA=OC,

∴∠OAC=∠OCA,

∵∠OAC+∠OBC=90°,

∴∠OCA+∠ACD=∠OCD=90°,

∴DC是⊙O的切線


【解析】(1)首先根據(jù)直徑所對的圓周角為直角得到直角三角形,然后利用勾股定理求得AC的長即可;(2)連接OC,證OC⊥CD即可;利用角平分線的性質(zhì)和等邊對等角,可證得∠OCA=∠CAD,即可得到OC∥AD,由于AD⊥CD,那么OC⊥CD,由此得證.此題主要考查的是切線的判定方法.要證某線是圓的切線,已知此線過圓上某點,連接圓心與這點(即為半徑),再證垂直即可.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC 中,AB=AC,BD 平分∠ABC AC G,DM//BC 交∠ABC 的外角平分線于 M, AB、AC F、E,下列結(jié)論:①MB⊥BD;②FD=FB;③MD=2CE. 其中一定正確的有( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,AB=AC,AC的垂直平分線分別交BC、AC于點D、E.

(1)若AC=12,BC=15,求ABD的周長;

(2)若∠B=20°,求∠BAD的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀:我們約定,在平面直角坐標系中,經(jīng)過某點且平行于坐標軸或平行于兩坐標軸夾角平分線的直線,叫該點的“特征線”.例如,點M(1,3)的特征線有:x=1,y=3,y=x+2,y=﹣x+4.

問題與探究:如圖,在平面直角坐標系中有正方形OABC,點B在第一象限,A、C分別在x軸和y軸上,拋物線 經(jīng)過B、C兩點,頂點D在正方形內(nèi)部.
(1)直接寫出點D(m,n)所有的特征線;
(2)若點D有一條特征線是y=x+1,求此拋物線的解析式;
(3)點P是AB邊上除點A外的任意一點,連接OP,將△OAP沿著OP折疊,點A落在點A′的位置,當點A′在平行于坐標軸的D點的特征線上時,滿足(2)中條件的拋物線向下平移多少距離,其頂點落在OP上?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,正方形ABCD對角線AC所在直線上有一點O,OA=AC=2,將正方形繞O點順時針旋轉(zhuǎn)60°,在旋轉(zhuǎn)過程中,正方形掃過的面積是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】科技館是少年兒童節(jié)假日游玩的樂園.如圖所示,圖中點的橫坐標x表示科技館從8:30開門后經(jīng)過的時間(分鐘),縱坐標y表示到達科技館的總?cè)藬?shù).圖中曲線對應(yīng)的函數(shù)解析式為y= ,10:00之后來的游客較少可忽略不計.

(1)請寫出圖中曲線對應(yīng)的函數(shù)解析式;
(2)為保證科技館內(nèi)游客的游玩質(zhì)量,館內(nèi)人數(shù)不超過684人,后來的人在館外休息區(qū)等待.從10:30開始到12:00館內(nèi)陸續(xù)有人離館,平均每分鐘離館4人,直到館內(nèi)人數(shù)減少到624人時,館外等待的游客可全部進入.請問館外游客最多等待多少分鐘?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】求下列各式的值

(1) (2)

(3) (4)

(5)+ (6)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我市某中學有一塊四邊形的空地ABCD,如圖所示,為了綠化環(huán)境,學校計劃在空地上種植草皮,經(jīng)測量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.

(1)求出空地ABCD的面積.

(2)若每種植1平方米草皮需要200元,問總共需投入多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:
(1)6÷(﹣3)+ ﹣8×22;
(2)解不等式組:

查看答案和解析>>

同步練習冊答案