【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),拋物線交軸于,兩點(diǎn),交軸于點(diǎn),直線經(jīng)過,兩點(diǎn).
(1)求拋物線的解析式;
(2)過點(diǎn)作直線軸交拋物線于另一點(diǎn),點(diǎn)是直線下方拋物線上的一個(gè)動(dòng)點(diǎn),且在拋物線對(duì)稱軸的右側(cè),過點(diǎn)作軸于點(diǎn),交于點(diǎn),交于點(diǎn),連接,過點(diǎn)作于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為,線段的長為,求與之間的函數(shù)解析式(不要求寫出自變量的取值范圍);
(3)在(2)的條件下,連接,過點(diǎn)作于點(diǎn)(點(diǎn)在線段上),交于點(diǎn),連接交于點(diǎn),當(dāng)時(shí),求線段的長.
【答案】(1);(2);(3).
【解析】
(1)首先求出點(diǎn)B、C的坐標(biāo),然后利用待定系數(shù)法求出拋物線的解析式;
(2)根據(jù)S△ABC=S△AMC+S△AMB,由三角形面積公式可求y與m之間的函數(shù)關(guān)系式;
(3)如圖2,由拋物線對(duì)稱性可得D(2,-3),過點(diǎn)B作BK⊥CD交直線CD于點(diǎn)K,OG⊥OS交KB于G,可得四邊形OCKB為正方形,過點(diǎn)O作OH⊥PC交PC延長線于點(diǎn)H,OR⊥BQ交BQ于點(diǎn)I交BK于點(diǎn)R,可得四邊形OHQI為矩形,可證△OBG≌△OCS,△OSR≌△OGR,得到tan∠QCT=tan∠TBK,設(shè)ST=TD=m,可得SK=2m+1,CS=2-2m,TK=m+1=BR,SR=3-m,RK=2-m,在Rt△SKR中,根據(jù)勾股定理求得m,可得tan∠PCD=,過點(diǎn)P作PE′⊥x軸于E′交CD于點(diǎn)F′,得到P(t,-t-3),可得-t-3=t2-2t-3,求得t,再根據(jù)MN=d求解即可.
解:(1)∵直線y=x-3經(jīng)過B、C兩點(diǎn),
∴B(3,0),C(0,-3),
∵y=x2+bx+c經(jīng)過B、C兩點(diǎn),
∴,
解得,
故拋物線的解析式為y=x2-2x-3;
(2)如圖1,y=x2-2x-3,
y=0時(shí),x2-2x-3=0,
解得x1=-1,x2=3,
∴A(-1,0),
∴OA=1,OB=OC=3,
∴∠ABC=45°,AC=,AB=4,
∵PE⊥x軸,
∴∠EMB=∠EBM=45°,
∵點(diǎn)P的橫坐標(biāo)為t,
∴EM=EB=3-t,
連接AM,
∵S△ABC=S△AMC+S△AMB
,
∴;
(3)如圖2,
∵y=x2-2x-3=(x-1)2-4,
∴對(duì)稱軸為x=1,
∴由拋物線對(duì)稱性可得D(2,-3),
∴CD=2,
過點(diǎn)B作BK⊥CD交直線CD于點(diǎn)K,
∴四邊形OCKB為正方形,
∴∠OBK=90°,CK=OB=BK=3,
∴DK=1,
∵BQ⊥CP,
∴∠CQB=90°,
∵∠CQB+∠COB=180°,
∴O、C、Q、B四點(diǎn)共圓,
∴∠OQB=∠OCB=45°
過點(diǎn)O作OH⊥PC交PC延長線于點(diǎn)H,OR⊥BQ交BQ于點(diǎn)I交BK于點(diǎn)R,OG⊥OS交KB于G,
∴∠OHC=∠OIQ=∠OIB=90°,
∴四邊形OHQI為矩形,
∵∠OQI=45°,
∴∠OQI=∠IOQ=45°,
∵∠OCQ+∠OBQ=180°,
∴∠OBG=∠OCS,
∵OB=OC,∠BOG=∠COS,
∴△OBG≌△OCS,
∴QG=OS,∠GOB=∠SOC,
∴∠SOG=90°,
∴∠ROG=∠QOI=45°,
∵OR=OR,
∴△OSR≌△OGR,
∴SR=GR,
∴SR=CS+BR,
∵∠BOR+∠OBI=90°,∠IBO+∠TBK=90°,
∴∠BOR=∠TBK,
∴tan∠BOR=tan∠TBK,
∴,
∴BR=TK,
∵∠CTQ=∠BTK,
∴∠QCT=∠TBK,
∴tan∠QCT=tan∠TBK,
設(shè)ST=TD=m,
∴SK=2m+1,CS=2-2m,TK=m+1=BR,SR=3-m,RK=2-m,
在Rt△SKR中,
∵SK2+RK2=SR2,
∴(2m+1)2+(2-m)2=(3-m)2,
解得m1=-2(舍去),m2=;
∴ST=TD=,TK=,
∴tan∠TBK=,
∴tan∠PCD=,
過點(diǎn)P作PE′⊥x軸于E′交CD于點(diǎn)F′,
∵CF′=OE′=t,
∴PF′=t,
∴PE′=t+3,
∴P(t,-t-3),
∴-t-3=t2-2t-3,
解得t1=0(舍去),t2=.
∴MN=d=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】定義:如果將△ABC與△DEF各分割成兩個(gè)三角形,且△ABC所分的兩個(gè)三角形與△DEF所分的兩個(gè)三角形分別對(duì)應(yīng)相似,那么稱△ABC與△DEF互為“近似三角形”,將每條分割線稱為“近似分割線”.
(1)如圖1,在Rt△ABC和Rt△DEF中,∠C=∠F=90°,∠A=30°,∠D=40°,請(qǐng)判斷這兩個(gè)三角形是否互為“近似三角形”?如果是,請(qǐng)直接在圖1中畫出一組分割線,并注明分割后所得兩個(gè)小三角形銳角的度數(shù);若不是,請(qǐng)說明理由.
(2)判斷下列命題是真命題還是假命題,若是真命題,請(qǐng)?jiān)诶ㄌ?hào)內(nèi)打“√”;若是假命題,請(qǐng)?jiān)诶ㄌ?hào)內(nèi)打“×”.
①任意兩個(gè)直角三角形都是互為“近似三角形” ;
②兩個(gè)“近似三角形”只有唯一的“近似分割線” ;
③如果兩個(gè)三角形中有一個(gè)角相等,那么這兩個(gè)三角形一定是互為“近似三角形” .
(3)如圖2,已知△ABC與△DEF中,∠A=∠D=15°,∠B=45°,∠E=60°,且BC=EF=,判斷這兩個(gè)三角形是否互為“近似三角形”?如果是,請(qǐng)?jiān)趫D2中畫出不同位置的“近似分割線”,并直接分別寫出“近似分割線”的和;如果不是,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形EFGH的頂點(diǎn)E,G分別在菱形ABCD的邊AD,BC上,頂點(diǎn)F,H在菱形ABCD的對(duì)角線BD上.
(1)求證:BG=DE;
(2)若E為AD中點(diǎn),FH=2,求菱形ABCD的周長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】珠海市有A,B,C,D,E五個(gè)景區(qū)很受游客喜愛.對(duì)某小區(qū)居民在暑假期間去以上五個(gè)景區(qū)旅游(只選一個(gè)景區(qū))的意向做了一次隨機(jī)調(diào)查統(tǒng)計(jì),并根據(jù)這個(gè)統(tǒng)計(jì)結(jié)果制作了如下兩幅不完整的統(tǒng)計(jì)圖.
(1)該小區(qū)居民在這次隨機(jī)調(diào)查中被調(diào)查到的人數(shù)是 人,m= ;
(2)若該小區(qū)有居民1500人,試估計(jì)去C景區(qū)旅游的居民約有多少人?
(3)甲、乙兩人暑假打算游玩,甲從B、C兩個(gè)景點(diǎn)中任意選擇一個(gè)游玩,乙從B、C 、E三個(gè)景點(diǎn)中任意選擇一個(gè)游玩.求甲、乙恰好游玩同一景點(diǎn)的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線y=k1x(x≥0)與雙曲線y= (x>0)相交于點(diǎn)P(2,4).已知點(diǎn)A(4,0),B(0,3),連接AB,將Rt△AOB沿OP方向平移,使點(diǎn)O移動(dòng)到點(diǎn)P,得到△A′PB′.過點(diǎn)A′作A′C∥y軸交雙曲線于點(diǎn)C,連接CP.
(1)求k1與k2的值;
(2)求直線PC的解析式;
(3)直接寫出線段AB掃過的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形中,,動(dòng)點(diǎn)從點(diǎn)同時(shí)出發(fā),點(diǎn)以每秒個(gè)單位長度的速度沿邊向終點(diǎn)勻速運(yùn)動(dòng),點(diǎn)以每秒個(gè)單位長度的速度沿邊向終點(diǎn)勻速運(yùn)動(dòng),以為邊在邊上方作正方形設(shè)點(diǎn)運(yùn)動(dòng)時(shí)間為.
(1)用含的代數(shù)式表示 ;
(2)當(dāng)點(diǎn)落在邊上時(shí),求此時(shí)的值;
(3)設(shè)正方形與矩形重疊圖形的面積為請(qǐng)直接寫出與之間的函數(shù)關(guān)系式,并寫出的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線y1=x﹣5與雙曲線y2=﹣.
(1)求證:無論p取何值時(shí),兩個(gè)函數(shù)的圖象恒有兩個(gè)交點(diǎn);
(2)設(shè)兩個(gè)交點(diǎn)分別為A(x1,y1)、B(x2,y2),且滿足x12+x22=3x1x2,求實(shí)數(shù)p的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為阻斷新冠疫情向校園蔓延,確保師生生命安全和身體健康,教育部通知,2020年春季學(xué)期延期開學(xué),利用網(wǎng)上平臺(tái),停課不停學(xué)”,某校對(duì)初三全體學(xué)生數(shù)學(xué)線上學(xué)習(xí)情況進(jìn)行調(diào)查,隨機(jī)抽取部分學(xué)生的4月月診斷性測試成績,按由高到低分為A,B,C,D四個(gè)等級(jí),根據(jù)調(diào)查的數(shù)據(jù)繪制成如下的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請(qǐng)根據(jù)圖中的信息,解答下列問題:
(1)該校共抽查了 名同學(xué)的數(shù)學(xué)測試成績,扇形統(tǒng)計(jì)圖中A等級(jí)所占的百分比a= ;
(2)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若該校初三共有1180名同學(xué),請(qǐng)估計(jì)該校初三學(xué)生數(shù)學(xué)測試成績優(yōu)秀(測試成績B級(jí)以上為優(yōu)秀,含B級(jí))約有 名;
(4)該校老師想從兩男、兩女四位學(xué)生中隨機(jī)選擇兩位了解平時(shí)線上學(xué)習(xí)情況,請(qǐng)用列表或畫樹形圖的方法求出恰好選中一男一女的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線頂點(diǎn)A的坐標(biāo)為(1,4),拋物線與x軸相交于B、C兩點(diǎn),與y軸交于點(diǎn)E(0,3).
(1)求拋物線的表達(dá)式;
(2)已知點(diǎn)F(0,-3),在拋物線的對(duì)稱軸上是否存在一點(diǎn)P,使得EP+FP最小,如果存在,求出點(diǎn)P的坐標(biāo);如果不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com