【題目】如圖,一條拋物線與x軸相交于A,B兩點,其頂點P在折線C-D-E上移動,若點C,D,E的坐標(biāo)分別為(-1,4),(3,4),(3,1),點B的橫坐標(biāo)的最小值為1,則點A的橫坐標(biāo)的最大值為________.
【答案】2
【解析】
拋物線在平移過程中形狀沒有發(fā)生變化,因此函數(shù)解析式的二次項系數(shù)在平移前后不會改變.首先,當(dāng)點B橫坐標(biāo)取最小值時,函數(shù)的頂點在C點,根據(jù)待定系數(shù)法可確定拋物線的解析式;而點A橫坐標(biāo)取最大值時,拋物線的頂點應(yīng)移動到E點,結(jié)合前面求出的二次項系數(shù)以及E點坐標(biāo)可確定此時拋物線的解析式,進一步能求出此時點A的坐標(biāo),即點A的橫坐標(biāo)最大值.
解:由圖知:當(dāng)點B的橫坐標(biāo)為1時,拋物線頂點取C(-1,4),設(shè)該拋物線的解析式為:y=a(x+1)2+4,代入點B坐標(biāo),得:
a(x+1)2+4=0,
解得:a=-1,
即:B點橫坐標(biāo)取最小值時,拋物線的解析式為:y=-(x+1)2+4.
當(dāng)A點橫坐標(biāo)取最大值時,拋物線頂點應(yīng)取E(3,1),則此時拋物線的解析式:y=-(x-3)2+1=-x2+6x-8=-(x-2)(x-4),
即與x軸的交點為(2,0)或(4,0)(舍去),
故點A的橫坐標(biāo)的最大值為2.
故答案為:2.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知直線l分別與x軸,y軸交于A,B兩點,與雙曲線(k≠0,x>0)分別交于D,E兩點.若點D的坐標(biāo)為((3.1),點E的坐標(biāo)為(1,n).
(1)分別求出直線l與雙曲線的解析式;
(2)求△EOD的面積;
(3)若將直線l向下平移m(m>O)個單位,當(dāng)m為何位時,直線l與雙曲線有且只有一個交點.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在同一平面直角坐標(biāo)系中,函數(shù)y=ax2+b與y=bx2+ax的圖象可能是( )
A. A B. B C. C D. D
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在數(shù)軸上點表示數(shù),點表示數(shù),點表示數(shù),已知數(shù)是最小的正整數(shù),且、滿足.
(1) , , ;
(2)若將數(shù)軸折疊,使得點與點重合,則點與數(shù) 表示的點重合;
(3)點、、開始在數(shù)軸上運動,若點以每秒1個單位長度的速度向左運動,同時,點和點分別以每秒2個單位長度和4個單位長度的速度向右運動,假設(shè)秒鐘過后,若點與點之間的距離表示為,點與點之間的距離表示為,點與點之間的距離表示為,求、、的長(用含的式子表示);
(4)在(3)的條件下,的值是否隨著時間的變化而改變?若改變,請說明理由;若不變,請求其值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l是矩形ABCD的一條對稱軸,AD=2AB,點P是直線l上一點,且使得△PAB和△PBC均為等腰三角形,則滿足條件的點P共有( )個.
A.1B.2C.3D.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是某街區(qū)的平面示意圖,根據(jù)要求答題.
(1)這幅圖的比例尺是( )
(2)學(xué)校位于廣場的( )面(填東、南、西、北)( )千米處.
(3)人民公園位于廣場的東偏南方向3千米處.在圖中標(biāo)出它的位置.
(4)廣場的西面1千米處,有一條商業(yè)街與人民路垂直,在圖中畫線表示商業(yè)街.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=x2-2bx+c.
(1)若拋物線的頂點坐標(biāo)為(2,-3),求b,c的值;
(2)若b+c=0,是否存在實數(shù)x,使得相應(yīng)的y的值為1?請說明理由;
(3)若c=b+2且拋物線在-2≤x≤2上的最小值是-3,求b的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知,在平面直角坐標(biāo)系中S△ABC=24,OA=OB,BC=12.
(1)求出三個頂點坐標(biāo).
(2)若P點為y軸上的一動點,且△ABP的面積等于△ABC的面積,求點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com