【題目】在黃州服裝批發(fā)市場,某種品牌的時(shí)裝當(dāng)季節(jié)將來臨時(shí),價(jià)格呈上升趨勢,設(shè)這種時(shí)裝開始時(shí)定價(jià)為20元,并且每周(7天)漲價(jià)2元,從第6周開始保持30元的價(jià)格平穩(wěn)銷售;從第12周開始,當(dāng)季節(jié)即將過去時(shí),平均每周減價(jià)2元,直到第16周周末,該服裝不再銷售.

(1)試建立銷售價(jià)y與周次x之間的函數(shù)關(guān)系式;

(2)若這種時(shí)裝每件進(jìn)價(jià)Z與周次x次之間的關(guān)系為Z=﹣0.125(x﹣8)2+12,1≤x≤16,且x為整數(shù),試問該服裝第幾周出售時(shí),每件銷售利潤最大?最大利潤為多少?

【答案】1y=;(211周出售時(shí),每件銷售利潤最大,最大利潤為19

【解析】試題分析由于yx之間的函數(shù)關(guān)系式為分段函數(shù),Wx之間的函數(shù)關(guān)系式亦為分段函數(shù).分情況解答即可

試題解析:(1)依題意得可建立的函數(shù)關(guān)系式為

;

y=

2)設(shè)利潤為W,W=售價(jià)﹣進(jìn)價(jià)

W,

化簡得W=

當(dāng)W=時(shí)當(dāng)x≥0,函數(shù)W隨著x增大而增大1≤x6當(dāng)x=5時(shí),W有最大值,最大值=

當(dāng)W=時(shí)W=,當(dāng)x≥8時(shí),函數(shù)Wx增大而增大,

x=11時(shí),函數(shù)有最大值為;

當(dāng)W=時(shí)W=,

∵12≤x≤16當(dāng)x≤16時(shí),函數(shù)Wx增大而減小,

x=12時(shí),函數(shù)有最大值為18

綜上所述當(dāng)x=11時(shí)函數(shù)有最大值為

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某檢修小組從地出發(fā),在東西向的馬路上檢修線路,如果規(guī)定向東行駛為正,向西行駛為負(fù),一天中七次行駛紀(jì)錄如下.(單位:

第一次

第二次

第三次

第四次

第五次

第六次

第七次

求收工時(shí),檢修小組在地的哪個(gè)方向?距離地多遠(yuǎn)?

在第幾次紀(jì)錄時(shí)距地最遠(yuǎn)?

若汽車行駛每千米耗油升,問從地出發(fā),檢修結(jié)束后再回到地共耗油多少升?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下圖取材于我國古代數(shù)學(xué)家趙爽的《勾股圓方圖》,由四個(gè)全等的直角三角形與中間的小正方形拼成的一個(gè)大正方形如果大正方形的面積是13,小正方形的面積是4,直角三角形的較短直角邊為a,較長直角邊為b,那么的值為______________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為8的正方形ABCD中,點(diǎn)OAD上一動(dòng)點(diǎn)(4OA8),以O為圓心,OA的長為半徑的圓交邊CD于點(diǎn)E,連接OE、AE,過點(diǎn)E作⊙O的切線交邊BCF

1)求證:ODE∽△ECF;

2)在點(diǎn)O的運(yùn)動(dòng)過程中,設(shè)DE=

①求的最大值,并求此時(shí)⊙O的半徑長;

②判斷CEF的周長是否為定值,若是,求出CEF的周長;否則,請(qǐng)說明理由?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】三角形角平分線交點(diǎn)或三角形內(nèi)切圓的圓心都稱為三角形的內(nèi)心.按此說法,四邊形的四個(gè)角平分線交于一點(diǎn)我們也稱為“四邊形的內(nèi)心”

(1)試舉出一個(gè)有內(nèi)心的四邊形

(2)探究對(duì)于任意四邊形ABCD,如果有內(nèi)心則四邊形的邊長具備何種條件?為什么?

(3)探究腰長為的等腰直角三角形ABC,∠C=90°,OABC的內(nèi)心,若沿圖中虛線剪開,O仍然是四邊形ABDE的內(nèi)心,此時(shí)裁剪線有多少條?

(4)問題(3)中,O是四邊形ABDE內(nèi)心,且四邊形ABDE是等腰梯形DE的長?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在某一城市美化工程招標(biāo)時(shí),有甲、乙兩個(gè)工程隊(duì)投標(biāo).經(jīng)測算:甲隊(duì)單獨(dú)完成這項(xiàng)工程需要60天,乙隊(duì)單獨(dú)完成這項(xiàng)工程需要90天;若由甲隊(duì)先做20天,剩下的工程由甲、乙兩隊(duì)合做完成.

1)甲、乙兩隊(duì)合作多少天?

2)甲隊(duì)施工一天需付工程款3.5萬元,乙隊(duì)施工一天需付工程款2萬元.若該工程計(jì)劃在70天內(nèi)完成,在不超過計(jì)劃天數(shù)的前提下,是由甲隊(duì)或乙隊(duì)單獨(dú)完成該工程省錢?還是由甲乙兩隊(duì)全程合作完成該工程省錢?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,AOB是直角三角形,AOB=90°,邊AB與y軸交于點(diǎn)C.

(1)A=AOC,試說明:B=BOC;

(2)延長AB交x軸于點(diǎn)E,過O作ODAB,若DOB=EOB,A=E,求A的度數(shù);

(3)如圖,OF平分AOM,BCO的平分線交FO的延長線于點(diǎn)P,A=40°,當(dāng)ABO繞O點(diǎn)旋轉(zhuǎn)時(shí)(邊AB與y軸正半軸始終相交于點(diǎn)C),問P的度數(shù)是否發(fā)生改變?若不變,求其度數(shù);若改變,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=90°,AD是中線,E是AD的中點(diǎn),過點(diǎn)A作AF∥BC交BE的延長線于F,連接CF.

(1)求證:AD=AF;

(2)如果AB=AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一條公路修到湖邊時(shí),需拐彎繞湖而過,如果第一次拐的角∠A120°,第二次拐的角∠B150°,第三次拐的角是∠C,這時(shí)的道路恰好和第一次拐彎之前的道路平行,則∠C的大小是( )

A. 150° B. 130° C. 140° D. 120°

查看答案和解析>>

同步練習(xí)冊(cè)答案