【題目】如圖,在△ABC中,∠BAC=90°,AD是中線,E是AD的中點(diǎn),過點(diǎn)A作AF∥BC交BE的延長(zhǎng)線于F,連接CF.

(1)求證:AD=AF;

(2)如果AB=AC,試判斷四邊形ADCF的形狀,并證明你的結(jié)論.

【答案】(1)見解析;

(2)四邊形ADCF是正方形.

【解析】

試題分析:(1)由E是AD的中點(diǎn),AF∥BC,易證得△AEF≌△DEB,即可得AD=BD,又由在△ABC中,∠BAC=90°,AD是中線,根據(jù)直角三角形斜邊的中線等于斜邊的一半,即可證得AD=BD=CD=BC,即可證得:AD=AF;

(2)由AF=BD=DC,AF∥BC,可證得:四邊形ADCF是平行四邊形,又由AB=AC,根據(jù)三線合一的性質(zhì),可得AD⊥BC,AD=DC,繼而可得四邊形ADCF是正方形.

試題解析:(1)∵AF∥BC,

∴∠EAF=∠EDB,

∵E是AD的中點(diǎn),

∴AE=DE,

在△AEF和△DEB中,

∠EAF=∠EDB,AE=DE,∠AEF=∠DEB,

∴△AEF≌△DEB(ASA),

∴AF=BD,

∵在△ABC中,∠BAC=90°,AD是中線,

∴AD=BD=DC=BC,

∴AD=AF;

(2)四邊形ADCF是正方形.

∵AF=BD=DC,AF∥BC,

∴四邊形ADCF是平行四邊形,

∵AB=AC,AD是中線,

∴AD⊥BC,

∵AD=AF,

∴四邊形ADCF是正方形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A、B、O是正方形網(wǎng)格上的三個(gè)格點(diǎn),⊙O的半徑為OA,點(diǎn)P是優(yōu)弧 上的一點(diǎn),則cos∠APB的值是( )

A.45°
B.1
C.
D.無法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,半徑為5的⊙A中,弦BC,ED所對(duì)的圓心角分別是∠BAC,∠EAD,若DE=6,∠BAC+∠EAD=180°,則弦BC的長(zhǎng)等于( )

A.8
B.10
C.11
D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某同學(xué)報(bào)名參加校運(yùn)動(dòng)會(huì),有以下5個(gè)項(xiàng)目可供選擇:
徑賽項(xiàng)目:100m,200m,400m(分別用A1、A2、A3表示);
田賽項(xiàng)目:跳遠(yuǎn),跳高(分別用B1、B2表示).
該同學(xué)從5個(gè)項(xiàng)目中任選兩個(gè),利用樹狀圖或表格列舉出所有可能出現(xiàn)的結(jié)果,并求恰好是一個(gè)田賽項(xiàng)目和一個(gè)徑賽項(xiàng)目的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AC是ABCD的對(duì)角線,∠BAC=∠DAC.

1求證:AB=BC;

2若AB=2,AC=2,求ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,將ABCD的邊DC延長(zhǎng)到點(diǎn)E,使CE=DC,連接AE,交BC于點(diǎn)F.

(1)求證:△ABF≌△ECF;
(2)若∠AFC=2∠D,連接AC、BE.求證:四邊形ABEC是矩形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在同一坐標(biāo)系中,一次函數(shù)y=ax+b與二次函數(shù)y=ax2﹣b的圖象可能是( )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)計(jì)劃用元從廠家購(gòu)進(jìn)臺(tái)新型電子產(chǎn)品,已知該廠家生產(chǎn)甲、乙、丙三種不同型號(hào)的電子產(chǎn)品,設(shè)甲、乙型設(shè)備應(yīng)各買入臺(tái),其中每臺(tái)的價(jià)格、銷售獲利如下表:

甲型

乙型

丙型

價(jià)格(元/臺(tái))

銷售獲利(元/臺(tái))

購(gòu)買丙型設(shè)備 臺(tái)(用含的代數(shù)式表示) ;

若商場(chǎng)同時(shí)購(gòu)進(jìn)三種不同型號(hào)的電子產(chǎn)品(每種型號(hào)至少有一臺(tái)),恰好用了元,則商場(chǎng)有哪幾種購(gòu)進(jìn)方案?

在第題的基礎(chǔ)上,為了使銷售時(shí)獲利最多,應(yīng)選擇哪種購(gòu)進(jìn)方案?此時(shí)獲利為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下面材料:

材料一:分解因式是將一個(gè)多項(xiàng)式化為若干個(gè)整式積的形式的變形,“十字相乘法”可把某些二次三項(xiàng)式分解為兩個(gè)一次式的乘積,具體做法如下:對(duì)關(guān)于的二次三項(xiàng)式,如圖1,將項(xiàng)系數(shù),作為第一列,項(xiàng)系數(shù),作為第二列,若恰好等于項(xiàng)的系數(shù),那么可直接分解因式為:

示例1:分解因式:

解:如圖2,其中,,而;

;

示例2:分解因式:

解:如圖3,其中,,而

;

材料二:關(guān)于,的二次多項(xiàng)式也可以用“十字相乘法”分解為兩個(gè)一次式的乘積.如圖4,將作為一列,作為第二列,作為第三列,若,,,即第1、2列,第1、3列和第23列都滿足十字相乘規(guī)則,則原式分解因式的結(jié)果為:;

示例3:分解因式:

解:如圖5,其中,;

滿足,;

請(qǐng)根據(jù)上述材料,完成下列問題:

1)分解因式: ;

2)若,均為整數(shù),且關(guān)于,的二次多項(xiàng)式可用“十字相乘法”分解為兩個(gè)一次式的乘積,求出的值,并求出關(guān)于的方程的整數(shù)解.

查看答案和解析>>

同步練習(xí)冊(cè)答案