如圖,在△ABC中,∠CAB=65°,將△ABC在平面內(nèi)繞點(diǎn)A旋轉(zhuǎn)到△AB′C′的位置,使CC′∥AB,則旋轉(zhuǎn)角的度數(shù)為( 。
A.35° B.40° C.50° D.65°
C【考點(diǎn)】旋轉(zhuǎn)的性質(zhì).
【分析】根據(jù)兩直線平行,內(nèi)錯(cuò)角相等可得∠ACC′=∠CAB,根據(jù)旋轉(zhuǎn)的性質(zhì)可得AC=AC′,然后利用等腰三角形兩底角相等求∠CAC′,再根據(jù)∠CAC′、∠BAB′都是旋轉(zhuǎn)角解答.
【解答】解:∵CC′∥AB,
∴∠ACC′=∠CAB=65°,
∵△ABC繞點(diǎn)A旋轉(zhuǎn)得到△AB′C′,
∴AC=AC′,
∴∠CAC′=180°﹣2∠ACC′=180°﹣2×65°=50°,
∴∠CAC′=∠BAB′=50°.
故選C.
【點(diǎn)評(píng)】本題考查了旋轉(zhuǎn)的性質(zhì),等腰三角形兩底角相等的性質(zhì),熟記性質(zhì)并準(zhǔn)確識(shí)圖是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
如圖,矩形ABCD的面積為5,它的兩條對(duì)角線交于點(diǎn)O1,以AB、A O1為兩鄰邊作平行四邊形AB C1 O1,平行四邊形ABC1O1的對(duì)角線交于點(diǎn)O2,同樣以AB、AO2為兩鄰邊作平行四邊形ABC2O2,……,依次類推,則平行四邊形ABCnOn的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
在平行四邊形ABCD中,點(diǎn)E是邊AD上一點(diǎn),且AE=2ED,EC交對(duì)角線BD于點(diǎn)F,則等于( 。
A. B. C. D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com