【題目】學(xué)校課外生物小組的試驗(yàn)園地是長32m、寬20m的矩形,為便于管理,現(xiàn)要在試驗(yàn)園地開辟水平寬度均為xm的小道(圖中陰影部分).

(1)如圖1,在試驗(yàn)園地開辟一條水平寬度相等的小道,則剩余部分面積為 m2(用含x的代數(shù)式表示);

(2)如圖2,在試驗(yàn)園地開辟水平寬度相等的三條小道,其中有兩條道路相互平行. 若使剩余部分面積為570m2,試求小道的水平寬度x.

【答案】(1)20(32-x);(2)小道寬為1米.

【解析】試題(1)利用平行四邊形面積求法直接平移陰影部分得出剩余面積即可;

(2)利用平行四邊形的面積求法,平移道路進(jìn)而得出方程求出即可.

試題解析:(1)由題意可得,剩余部分面積為:20(32-x)m2;

(2)依題意,得640-40x-32x+2x2=570

解得x1=1,x2=35(不合舍去)

答:小道寬為1米.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖,ABC為等邊三角形,AE=CDAD、BE相交于點(diǎn)P

1)求證:AEB≌△CDA

2)求BPQ的度數(shù);

3)若BQADQ,PQ=6,PE=2,求BE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用反證法證明:兩直線平行,同旁內(nèi)角互補(bǔ)(填空).

已知:如圖,l1l2,l1,l2都被l3所截.

求證:∠1+2=180°.

證明:假設(shè)∠1+2________180°. l1l2,∴∠1________3. ∵∠1+2 _______180°,∴∠3+2180°,這和________矛盾,∴假設(shè)∠1+2__________180°不成立,即∠1+2=180°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在正方形ABCD中,E,F(xiàn)分別為BC,CD的中點(diǎn),AE與BF相交于點(diǎn)G.

(1)如圖1,求證:AE⊥BF;
(2)如圖2,將△BCF沿BF折疊,得到△BPF,延長FP交BA的延長線于點(diǎn)Q,若AB=4,求QF的值

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某手機(jī)店今年1-4月的手機(jī)銷售總額如圖1,其中一款音樂手機(jī)的銷售額占當(dāng)月手機(jī)銷售總額的百分比如圖2.有以下四個(gè)結(jié)論:

①從1月到4月,手機(jī)銷售總額連續(xù)下降

②從1月到4月,音樂手機(jī)銷售額在當(dāng)月手機(jī)銷售總額中的占比連續(xù)下降

③音樂手機(jī)4月份的銷售額比3月份有所下降

④今年1-4月中,音樂手機(jī)銷售額最低的是3

其中正確的結(jié)論是________(填寫序號(hào)).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn)A(0,4),B(1,0),C(5,0),其對(duì)稱軸與x軸相交于點(diǎn)M.

(1)求拋物線的解析式和對(duì)稱軸;
(2)在拋物線的對(duì)稱軸上是否存在一點(diǎn)P,使△PAB的周長最小?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)連接AC,在直線AC的下方的拋物線上,是否存在一點(diǎn)N,使△NAC的面積最大?若存在,請(qǐng)求出點(diǎn)N的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平行四邊形ABCD中,AB=9,AD=6,∠ADC的平分線交AB于點(diǎn)E,交CB的延長線于點(diǎn)F,AG⊥DE,垂足為G.若AG=4 ,則△BEF的面積是( )

A.
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)y= 的圖象如圖所示,則二次函數(shù)y=﹣kx2﹣2x+ 的圖象大致為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】張老師利用休息時(shí)間組織學(xué)生測(cè)量山坡上一棵大樹CD的高度,如圖,山坡與水平面成30°角(即∠MAN=30°),在山坡底部A處測(cè)得大樹頂端點(diǎn)C的仰角為45°,沿坡面前進(jìn)20米,到達(dá)B處,又測(cè)得樹頂端點(diǎn)C的仰角為60°(圖中各點(diǎn)均在同一平面內(nèi)),求這棵大樹CD的高度(結(jié)果精確到0.1米,參考數(shù)據(jù): ≈1.732)

查看答案和解析>>

同步練習(xí)冊(cè)答案