【題目】如圖,在直角坐標系中,拋物線經過點A(0,4),B(1,0),C(5,0),其對稱軸與x軸相交于點M.
(1)求拋物線的解析式和對稱軸;
(2)在拋物線的對稱軸上是否存在一點P,使△PAB的周長最小?若存在,請求出點P的坐標;若不存在,請說明理由;
(3)連接AC,在直線AC的下方的拋物線上,是否存在一點N,使△NAC的面積最大?若存在,請求出點N的坐標;若不存在,請說明理由.
【答案】
(1)解:根據已知條件可設拋物線的解析式為y=a(x﹣1)(x﹣5),
把點A(0,4)代入上式得:a= ,
∴y= (x﹣1)(x﹣5)= x2﹣ x+4= (x﹣3)2﹣ ,
∴拋物線的對稱軸是:直線x=3;
(2)解:P點坐標為(3, ).
理由如下:
∵點A(0,4),拋物線的對稱軸是直線x=3,
∴點A關于對稱軸的對稱點A′的坐標為(6,4)
如圖1,連接BA′交對稱軸于點P,連接AP,此時△PAB的周長最。
設直線BA′的解析式為y=kx+b,
把A′(6,4),B(1,0)代入得 ,
解得 ,
∴y= x﹣ ,
∵點P的橫坐標為3,
∴y= ×3﹣ = ,
∴P(3, ).
(3)解:在直線AC的下方的拋物線上存在點N,使△NAC面積最大.
設N點的橫坐標為t,此時點N(t, t2﹣ t+4)(0<t<5),
如圖2,過點N作NG∥y軸交AC于G;作AD⊥NG于D,
由點A(0,4)和點C(5,0)可求出直線AC的解析式為:y=﹣ x+4,
把x=t代入得:y=﹣ t+4,則G(t,﹣ t+4),
此時:NG=﹣ t+4﹣( t2﹣ t+4)=﹣ t2+4t,
∵AD+CF=CO=5,
∴S△ACN=S△ANG+S△CGN= AD×NG+ NG×CF= NGOC= ×(﹣ t2+4t)×5=﹣2t2+10t=﹣2(t﹣ )2+ ,
∴當t= 時,△CAN面積的最大值為 ,
由t= ,得:y= t2﹣ t+4=﹣3,
∴N( ,﹣3).
【解析】(1)設拋物線的解析式為y=a(x-1)(x-5),然后將代入A(0,4)代入拋物線的解析式可求得a的值,從而可得到拋物線的解析式,然后利用拋物線的對稱性可得到拋物線的對稱軸;
(2)作點A關于對稱軸的對稱點A′,連接BA′交對稱軸于點P,連接AP,此時△PAB的周長最小,然后再求出直線BA′的解析式,從而可求得點P的坐標.
(3)在直線AC的下方的拋物線上存在點N,使△NAC面積最大.設N點的橫坐標為t,可得到點N的坐標,再求得直線AC的解析式,從而可求得NG的長t的函數關系式,最后再求出二次函數最大值即可.
科目:初中數學 來源: 題型:
【題目】已知:如圖,在四邊形OABC中,AB∥OC,BC⊥x軸于點C,A(2,﹣2),B(6,﹣2),動點P從點O出發(fā),沿著x軸正方向以每秒2個單位的速度移動,過點P作PQ垂直于直線OA,垂足為點Q,設點P移動的時間t秒(0<t<4).△OPQ與四邊形OABC重疊部分的面積為S.
(1)求經過O、A、B三點的拋物線的解析式;
(2)若將△OPQ沿著直線PQ翻折得到△O′PQ,則當t=時,點O′恰好在拋物線上.
(3)在(2)的條件下,記△O′PQ與四邊形OABC重疊的面積為S,求S與t的函數關系式,并注明自變量的取值范圍.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若點(x1 , y1),(x2 , y2),(x3 , y3)都是反比例函數y=﹣ 圖象上的點,并且y1<0<y2<y3 , 則下列各式中正確的是( )
A.x1<x2<x3
B.x1<x3<x2
C.x2<x1<x3
D.x2<x3<x1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD和正方形CEFG邊長分別為a和b,正方形CEFG繞點C旋轉,給出下列結論:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正確結論有( )
A. 0個 B. 1個 C. 2個 D. 3個
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】學校課外生物小組的試驗園地是長32m、寬20m的矩形,為便于管理,現要在試驗園地開辟水平寬度均為xm的小道(圖中陰影部分).
(1)如圖1,在試驗園地開辟一條水平寬度相等的小道,則剩余部分面積為 m2(用含x的代數式表示);
(2)如圖2,在試驗園地開辟水平寬度相等的三條小道,其中有兩條道路相互平行. 若使剩余部分面積為570m2,試求小道的水平寬度x.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在正方形網格中建立平面直角坐標系,使得,兩點的坐標分別為,,過點作軸于點C,
(1)按照要求畫出平面直角坐標系,線段,寫出點的坐標__________;
(2)直接寫出以,,為頂點的三角形的面積___________;
(3)若線段是由線段平移得到的,點的對應點是,寫出一種由線段得到線段的過程________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在長方形內,若兩張邊長分別為和()的正方形紙片按圖1,圖2兩種方式放置(圖1,圖2中兩張正方形紙片均有部分重疊),長方形總未被這兩張正方形紙片覆蓋的部分用陰影表示,若圖1中陰影部分的面積為,圖2中陰影部分的面積和為,則關于,的大小關系表述正確的是( )
A.B.C.D.無法確定
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數y1=ax+b(a≠0)的圖象與反比例函數y2=(k為常數,k≠0)的圖象交于A、B兩點,過點A作AC⊥x軸,垂足為C,連接OA,已知OC=2,tan∠AOC=,B(m,﹣2)
(1)求一次函數和反比例函數的解析式.
(2)結合圖象直接寫出:當y1>y2時,x的取值范圍.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com