如圖,OA、OB是⊙O的半徑,∠O=40°,∠B=50°,則∠A等于


  1. A.
    80°
  2. B.
    70°
  3. C.
    60°
  4. D.
    30°
D
分析:先根據(jù)圓周角定理求出∠C的度數(shù),由三角形內(nèi)角和定理可得出∠BDC的度數(shù),由對(duì)頂角相等可知∠ADO的度數(shù),再在△AOD中由三角形內(nèi)角和定理即可求出∠AA的度數(shù).
解答:解:∵∠O=40°,
∴∠C=∠O=20°,
∴∠BDC=180°-∠B-∠C=180°-50°-20°=110°,
∴∠ADO=∠BDC=110°,
∴∠A=180°-∠ADO-∠O=180°-110°-40°=30°.
故選D.
點(diǎn)評(píng):本題考查的是圓周角定理及三角形內(nèi)角和定理,熟知“在同圓或等圓中,同弧或等弧所對(duì)的圓周角相等,都等于這條弧所對(duì)的圓心角的一半”是解答此題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(diǎn),BP的延長(zhǎng)線(xiàn)交⊙O于點(diǎn)Q,過(guò)點(diǎn)Q的直線(xiàn)交OA延長(zhǎng)線(xiàn)于點(diǎn)R,且RP=RQ
(1)求證:直線(xiàn)QR是⊙O的切線(xiàn);
(2)若OP=PA=1,試求RQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,OA、OB是兩條互相垂直的半徑,且OA=4,C為OB的中點(diǎn),以O(shè)B為直徑作半圓,CP∥OA,交
AB
于點(diǎn)P,則圖中陰影部分的面積為
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

16、如圖,OA和OB是⊙O的半徑,并且OA⊥OB.P是OA上的任意一點(diǎn),BP的延長(zhǎng)線(xiàn)交⊙O于點(diǎn)Q,點(diǎn)R在OA的延長(zhǎng)線(xiàn)上,且RP=RQ.
(1)求證:RQ是⊙O的切線(xiàn);
(2)求證:OB2=PB•PQ+OP2;
(3)當(dāng)RA≤OA時(shí),試確定∠B的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,OA和OB是⊙O的半徑,OB=2,OA⊥OB,P是OA上任一點(diǎn),BP的延長(zhǎng)線(xiàn)交⊙O于點(diǎn)Q,過(guò)點(diǎn)Q的⊙O的切線(xiàn)交OA延長(zhǎng)線(xiàn)于點(diǎn)R.
(Ⅰ)求證:RP=RQ;
(Ⅱ)若OP=PQ,求PQ的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,OA和OB是⊙O的半徑,并且OA⊥OB,P是OA上任一點(diǎn),BP的延長(zhǎng)線(xiàn)交⊙O于點(diǎn)Q,過(guò)點(diǎn)Q的直線(xiàn)交OA延長(zhǎng)線(xiàn)于點(diǎn)R,且RP=RQ
求證:直線(xiàn)QR是⊙O的切線(xiàn).

查看答案和解析>>

同步練習(xí)冊(cè)答案