【題目】如圖,男生樓在女生樓的左側(cè),兩樓高度均為90m,樓間距為AB,冬至日正午,太陽光線與水平面所成的角為,女生樓在男生樓墻面上的影高為CA;春分日正午,太陽光線與水平面所成的角為,女生樓在男生樓墻面上的影高為DA,已知

求樓間距AB;

若男生樓共30層,層高均為3m,請通過計算說明多少層以下會受到擋光的影響?參考數(shù)據(jù):,,,,,

【答案】(1)的長為50m;(2)冬至日20包括20以下會受到擋光的影響,春分日6包括6以下會受到擋光的影響.

【解析】

如圖,作M,設(shè)想辦法構(gòu)建方程即可解決問題.

求出ACAD,分兩種情形解決問題即可.

解:如圖,作M,,設(shè)

中,

中,,

,

,

,

的長為50m

可知:

,,

,,

冬至日20包括20以下會受到擋光的影響,春分日6包括6以下會受到擋光的影響.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,C 是⊙O上一點,過點C 作⊙O的切線,交BA的延長線交于點D,過點B BEBA,交DC延長線于點E,連接OE,交⊙O于點F,交BC于點H,連接AC

1)求證:∠ECB=EBC;

2)連接BF,CF,若BF=5sinFBC=,求AC的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,當線段AB與坐標軸不垂直時,以線段AB為斜邊作RtABC,且邊BCx軸,則稱AC+BC的值為線段AB的直角距離,記作LAB);當線段AB與坐標軸垂直時,線段AB的直角距離不存在.

1)在平面直角坐標系中,A1,4),B4,2),求LAB).

2)在平面直角坐標系中,點A與坐標原點重合,點Bx,y),且LAB)=2

當點Bx,y)在第一象限時,易知ACx,BCy.由AC+BCLAB),可得yx之間的函數(shù)關(guān)系式為   ,其中x的取值范圍是   ,在圖中畫出這個函數(shù)的圖象.

請模仿的思考過程,分別探究點B在其它象限的情形,仍然在圖中分別畫出點B在二、三、四象限時,yx的函數(shù)圖象.(不要求寫出探究過程)

3)在平面直角坐標系中,點A11),在拋物線yaxh2+5上存在點B,使得2LAB)≤4

a=﹣時,直接寫出h的取值范圍.

h0,且△ABC是等腰直角三角形時,直接寫出a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知二次函數(shù)和二次函數(shù)圖象的頂點分別為、,與軸分別相交于、兩點(點在點的左邊)和、兩點(點在點的左邊),

     

1)函數(shù)的頂點坐標為______;當二次函數(shù),值同時隨著的增大而增大時,則的取值范圍是_______;

2)判斷四邊形的形狀(直接寫出,不必證明);

3)拋物線,均會分別經(jīng)過某些定點;

①求所有定點的坐標;

②若拋物線位置固定不變,通過平移拋物線的位置使這些定點組成的圖形為菱形,則拋物線應(yīng)平移的距離是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為2的正方形中,的中點,為邊上一動點,設(shè),線段的垂直平分線分別交邊、于點、,過于點,過于點

1)當時,求證:

2)順次連接、、、,設(shè)四邊形的面積為,求出與自變量之間的函數(shù)關(guān)系式,并求的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形中,是對角線的交點,邊上的動點(點不與重合),過點垂直于點,連結(jié).下列四個結(jié)論:①;②;③;④若,則的最小值是1.其中正確結(jié)論是(

A.①②③B.①③④C.①②④D.②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,以原點O為圓心,3為半徑的圓與x軸分別交于A,B兩點(點B在點A的右邊),P是半徑OB上一點,過P且垂直于AB的直線與O分別交于C,D兩點(點C在點D的上方),直線AC,DB交于點E.若AC:CE=1:2.

(1)求點P的坐標;

(2)求過點A和點E,且頂點在直線CD上的拋物線的函數(shù)表達式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在正方形中,點在邊上運動(不運動至兩端點),射線,交于點,的外接圓,連結(jié),

1)求的度數(shù).

2)求證:

3)若正方形的邊長為

①當中點時,求四邊形的面積.

②設(shè),交于點,設(shè),,的面積分別為,,當平分時,_________(直接寫出答案).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,矩形OABC的頂點A、C分別在x、y軸的正半軸上,頂點B的坐標為(4,2)點M是邊BC上的一個動點(不與B、C重合),反比例函數(shù)k0,x0)的圖象經(jīng)過點M且與邊AB交于點N,連接MN

(1)當點M是邊BC的中點時,求反比例函數(shù)的表達式;

(2)在點M的運動過程中,試證明:是一個定值.

查看答案和解析>>

同步練習冊答案