如圖,在平面直角坐標(biāo)系中,M為x軸正半軸上的一點(diǎn),⊙M與x軸交于A、B兩點(diǎn),與y軸交于C、D兩點(diǎn),若A(-1,0),C點(diǎn)的坐標(biāo)為(0,
3
)


(1)求M點(diǎn)的坐標(biāo);
(2)如圖,P為
BC
上的一個(gè)動(dòng)點(diǎn),CQ平分∠PCD.當(dāng)P點(diǎn)運(yùn)動(dòng)時(shí),線段AQ的長度是否改變?若不變,請求其值;若改變,請求出其變化范圍;

(3)如圖,以A為圓心AC為半徑作⊙A,P為⊙A上不同于C、D的一個(gè)動(dòng)點(diǎn),直線PC交⊙M于點(diǎn)Q,K為PQ的中點(diǎn),當(dāng)P點(diǎn)運(yùn)動(dòng)時(shí),現(xiàn)給出兩個(gè)結(jié)論:①
CK
PQ
的值不變;②線段OK的長度不變.其中有且只有一個(gè)結(jié)論正確,選擇正確的結(jié)論證明并求其值.
(1)連接MC,設(shè)⊙M的半徑為R
∵A(-1,0),C(0,
3
),OC2+OM2=MC2
(
3
)2+(R-1)2=R2

解得R=2.
∴M點(diǎn)的坐標(biāo)為(1,0).

(2)AQ不變,AQ=AC=2.
連接AC,∵∠ACD=∠P
又∵CQ平分∠OCP
∴∠PCQ=∠OCQ
∴∠ACD+∠OCQ=∠PCQ+∠P
即:∠ACQ=∠AQC
∴AQ=AC=2.

(3)OK不變,OK=
3

連接PD、QD、KD,
∵AC=
(
3
)
2
+12
=2
∴⊙A的半徑為2
∵⊙A的半徑為2,⊙M的半徑為2
∴⊙A、⊙M為等圓
DAC
=
DMC

∴∠DPQ=∠DQP
∴DQ=DP
∵K為PQ的中點(diǎn)
∴DK⊥PQ
∵OC=OD
OK=
1
2
CD
=OC=
3

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在10×10的正方形網(wǎng)格中(每個(gè)小正方形的邊長都為1個(gè)單位),△ABC的三個(gè)頂點(diǎn)都在格點(diǎn)上.
(1)建立如圖所示的直角坐標(biāo)系,請?jiān)趫D中標(biāo)出△ABC的外接圓的圓心P的位置,并填寫:
①圓心P的坐標(biāo):P(______,______);
②⊙P的半徑為______.
(2)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)90度得到△ADE,畫出圖形,并求線段BC掃過的圖形的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖:點(diǎn)D是等邊△ABC的邊BC上一點(diǎn),△ABD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)到△ACE的位置,則∠DAE=______°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,大半圓O1與小半圓O2相切于點(diǎn)C,大半圓的弦AB與小半圓相切于點(diǎn)F,且ABCD,AB=4cm,則陰影部分的面積為______cm2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:填空題

如圖,在⊙O中,直徑AB丄弦CD于點(diǎn)M,AM=18,BM=8,則CD的長為______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知:如圖,AB是⊙O的直徑,弦CD交AB于E點(diǎn),BE=1,AE=5,∠AEC=30°,求CD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

在⊙O中,直徑AB⊥CD于點(diǎn)E,連接CO并延長交AD于點(diǎn)F,且CF⊥AD.求∠D的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知△ABC中,AB=AC,∠BAC=120°,在BC上取一點(diǎn)O,以O(shè)為圓心、OB為半徑作圓,且⊙O過A點(diǎn).
(Ⅰ)如圖①,若⊙O的半徑為5,求線段OC的長;
(Ⅱ)如圖②,過點(diǎn)A作ADBC交⊙O于點(diǎn)D,連接BD,求
BD
AC
的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

DE是⊙O的直徑,弦AB⊥DE,垂足為C,若AB=6,CE=1,求OC及CD.

查看答案和解析>>

同步練習(xí)冊答案