【題目】如圖,一條拋物線與x軸相交于A、B兩點(diǎn),其頂點(diǎn)P在折線C﹣D﹣E上移動(dòng),若點(diǎn)C、D、E的坐標(biāo)分別為(﹣1,4)、(3,4)、(3,1),點(diǎn)B的橫坐標(biāo)的最小值為1,則點(diǎn)A的橫坐標(biāo)的最大值為( )
A.1
B.2
C.3
D.4
【答案】B
【解析】解:由圖知:當(dāng)點(diǎn)B的橫坐標(biāo)為1時(shí),拋物線頂點(diǎn)取C(﹣1,4),設(shè)該拋物線的解析式為:y=a(x+1)2+4,代入點(diǎn)B坐標(biāo),得:
0=a(1+1)2+4,a=﹣1,
即:B點(diǎn)橫坐標(biāo)取最小值時(shí),拋物線的解析式為:y=﹣(x+1)2+4.
當(dāng)A點(diǎn)橫坐標(biāo)取最大值時(shí),拋物線頂點(diǎn)應(yīng)取E(3,1),則此時(shí)拋物線的解析式:y=﹣(x﹣3)2+1=﹣x2+6x﹣8=﹣(x﹣2)(x﹣4),即與x軸的交點(diǎn)為(2,0)或(4,0)(舍去),
∴點(diǎn)A的橫坐標(biāo)的最大值為2.
故選B.
拋物線在平移過(guò)程中形狀沒(méi)有發(fā)生變化,因此函數(shù)解析式的二次項(xiàng)系數(shù)在平移前后不會(huì)改變.首先,當(dāng)點(diǎn)B橫坐標(biāo)取最小值時(shí),函數(shù)的頂點(diǎn)在C點(diǎn),根據(jù)待定系數(shù)法可確定拋物線的解析式;而點(diǎn)A橫坐標(biāo)取最大值時(shí),拋物線的頂點(diǎn)應(yīng)移動(dòng)到E點(diǎn),結(jié)合前面求出的二次項(xiàng)系數(shù)以及E點(diǎn)坐標(biāo)可確定此時(shí)拋物線的解析式,進(jìn)一步能求出此時(shí)點(diǎn)A的坐標(biāo),即點(diǎn)A的橫坐標(biāo)最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:拋物線y=ax2+bx﹣3經(jīng)過(guò)點(diǎn)A(7,﹣3),與x軸正半軸交于點(diǎn)B(m,0)、C(6m、0)兩點(diǎn),與y軸交于點(diǎn)D.
(1)求m的值;
(2)求這條拋物線的表達(dá)式;
(3)點(diǎn)P在拋物線上,點(diǎn)Q在x軸上,當(dāng)∠PQD=90°且PQ=2DQ時(shí),求點(diǎn)P、Q的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,O為直線AB上一點(diǎn),過(guò)點(diǎn)O作射線OC,∠AOC=30°,將一直角三角板(∠M=30°)的直角頂點(diǎn)放在點(diǎn)O處,一邊ON在射線OA上,另一邊OM與OC都在直線AB的上方.
(1)將圖1中的三角板繞點(diǎn)O以每秒3°的速度沿順時(shí)針?lè)较蛐D(zhuǎn)一周.如圖2,經(jīng)過(guò)t秒后OM恰好平分∠BOC,則t= (直接寫(xiě)結(jié)果)
(2)在(1)問(wèn)的基礎(chǔ)上,若三角板在轉(zhuǎn)動(dòng)的同時(shí),射線OC也繞O點(diǎn)以每秒6°的速度沿順時(shí)針?lè)较蛐D(zhuǎn)一周,如圖3,那么經(jīng)過(guò)多少秒后OC平分∠MON?請(qǐng)說(shuō)明理由;
(3)在(2)問(wèn)的基礎(chǔ)上,那么經(jīng)過(guò)多少秒∠MOC=36°?請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,這是一個(gè)“數(shù)值轉(zhuǎn)換機(jī)”(箭頭為數(shù)進(jìn)入轉(zhuǎn)換機(jī)的路徑,方框是對(duì)進(jìn)入的數(shù)進(jìn)行轉(zhuǎn)換的轉(zhuǎn)換機(jī)).
(1)當(dāng)輸入7、-2018這兩個(gè)數(shù)時(shí),求出它們各自輸出的結(jié)果;
(2)若輸入一非零數(shù),其輸出結(jié)果為0,則輸入的數(shù)是多少?(找一個(gè)即可)
(3)若輸出的結(jié)果是2,請(qǐng)直接寫(xiě)出輸入的數(shù).(用含自然數(shù)n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】定義一種新運(yùn)算“⊕”:a⊕b=2a﹣ab,比如1⊕(﹣3)=2×1﹣1×(﹣3)=5
(1)求(﹣2)⊕3的值;
(2)若(﹣3)⊕x=(x+1)⊕5,求x的值;
(3)若x⊕1=2(1⊕y),求代數(shù)式x+y+1的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了了解市民“獲取新聞的最主要途徑”,某市記者開(kāi)展了一次抽樣調(diào)查,根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計(jì)圖.
根據(jù)以上信息解答下列問(wèn)題:
(1)這次抽樣調(diào)查的樣本容量是 ;
(2)通過(guò)“電視”了解新聞的人數(shù)占被調(diào)查人數(shù)的百分比為 ;扇形統(tǒng)計(jì)圖中, “手機(jī)上網(wǎng)”所對(duì)應(yīng)的圓心角的度數(shù)是 ;
(3)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(4)若該市約有70萬(wàn)人,請(qǐng)你估計(jì)其中將“電腦和手機(jī)上網(wǎng)”作為“獲取新聞的最主要途徑”的總?cè)藬?shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】菱形ABCD中,∠B=60°,點(diǎn)E在邊BC上,點(diǎn)F在邊CD上.
(1)如圖1,若E是BC的中點(diǎn),∠AEF=60°,求證:BE=DF;
(2)如圖2,若∠EAF=60°,求證:△AEF是等邊三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,在河的兩岸有A,B兩個(gè)村莊,河寬為4千米,A、B兩村莊的直線距離 AB=10千米,A、B兩村莊到河岸的距離分別為1千米、3千米,計(jì)劃在河上修建一座橋MN垂直于兩岸,M點(diǎn)為靠近A村莊的河岸上一點(diǎn),求AM+BN的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某旅游景區(qū)上山的一條小路上,有一些斷斷續(xù)續(xù)的臺(tái)階,下圖是其中的甲、乙兩段臺(tái)階的示意圖,圖中的數(shù)字表示每一級(jí)臺(tái)階的高度(單位:cm).請(qǐng)你用所學(xué)過(guò)的有關(guān)統(tǒng)計(jì)知識(shí),回答下列問(wèn)題(數(shù)據(jù):15,16,16,14,14,15的方差,數(shù)據(jù):11,15,18,17,10,19的方差:
(1)分別求甲、乙兩段臺(tái)階的高度平均數(shù);
(2)哪段臺(tái)階走起來(lái)更舒服?與哪個(gè)數(shù)據(jù)(平均數(shù)、中位數(shù)、方差和極差)有關(guān)?
(3)為方便游客行走,需要陳欣整修上山的小路,對(duì)于這兩段臺(tái)階路.在總高度及臺(tái)階數(shù)不變的情況下,請(qǐng)你提出合理的整修建議.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com