【題目】已知拋物線的頂點(diǎn)在定直線上.

(1)點(diǎn)的坐標(biāo)(用含的式子表示)

(2)求證:不論為何值,拋物線與定直線的兩交點(diǎn)間的距離恒為定值;

(3)當(dāng)的頂點(diǎn)軸上,且與軸交于、兩點(diǎn)(點(diǎn)在點(diǎn)左側(cè))時(shí),在上是否存在兩點(diǎn)、,設(shè)交線段點(diǎn),使,且直線的面積分成的兩部分?若存在,求出直線的解析式;若不存在,請(qǐng)說(shuō)明理由.

【答案】1C-2m,-4m-3);(2)見(jiàn)解析;(3)存在,直線MN的解析式為:y=x+3-2y=x+3-2

【解析】

1)可用配方法將拋物線的解析式配成頂點(diǎn)式,從而可得出結(jié)果;

2)設(shè)頂點(diǎn)坐標(biāo)為(x,y),從而可用含m的代數(shù)式表示x、y,消去m,就可得到xy的關(guān)系,得出定直線l的解析式,將直線l的解析式與拋物線的解析式聯(lián)立,消去y,求出x,就可得到兩交點(diǎn)的橫坐標(biāo),將橫坐標(biāo)代入直線l的解析式進(jìn)而可得出兩個(gè)交點(diǎn)的坐標(biāo),然后運(yùn)用兩點(diǎn)之間的距離公式就可解決問(wèn)題;
3)先得出C1的解析式,求出AB,C的坐標(biāo),再進(jìn)一步得出∠ACB=60°,所以MNBC,從而根據(jù)直線BC的解析式可設(shè)MN的解析式為y=x+m.由直線MN將△ABC的面積分成兩部分,設(shè)MNx軸交于點(diǎn)T,可分為以下兩種情況:①當(dāng)SAPT:S四邊形PTBC=1:2時(shí),則SAPT=SABC;當(dāng)SAPT:S四邊形PTBC=2:1時(shí),則SAPT=SABC,再根據(jù)相似三角形的性質(zhì)可求出AT的長(zhǎng),從而可得出點(diǎn)T的坐標(biāo),代入直線MN的解析式可求出m的值,即可得出結(jié)果.

解:(1)∵y=x2+4mx+4m2-4m-3=x+2m2-4m-3,
∴拋物線的頂點(diǎn)C的坐標(biāo)為(-2m,-4m-3);
2)設(shè)拋物線的頂點(diǎn)坐標(biāo)為(x,y),
則有x=-2m①,y=-4m-3②,

由①②消去m得,y=2x-3
∴定直線l的解析式為y=2x-3

聯(lián)立拋物線與直線l的解析式得,

,消去y整理得,x2+4m-2x+4m2-4m=0,

∴(x+2m(x+2m-2)=0,∴x1=-2m,x2=2-2m

∴拋物線與定直線l的兩交點(diǎn)坐標(biāo)為(-2m,-4m-3),(2-2m,1-4m),

d==

故不論為何值,拋物線與定直線的兩交點(diǎn)間的距離恒為定值;

3)存在.∵拋物線的頂點(diǎn)在y軸上,∴-2m=0,即m=0

C1的解析式為y=x2-3

A(-,0),B,0),C0,-3),

BO=AO=,OC=3,∴AB=2tanACO=,

∴∠ACO=30°,同理可得∠BCO=30°,

∴∠APN=2ACO=60°,∴∠APN=ACB=60°,

MNBC,

設(shè)直線BC的解析式為y=kx+b,則,得k=

∴設(shè)直線MN的解析式為y=x+m,設(shè)MNx軸交于點(diǎn)T,

情況1:如圖①,當(dāng)SAPT:S四邊形PTBC=1:2時(shí),則SAPT=SABC

PTBC,∴△APT∽△ACB

,∴AT==2,∴OT=2-,

∴點(diǎn)T的坐標(biāo)為(2-0).

將點(diǎn)T的坐標(biāo)代入y=x+m得,m=3-2

∴直線MN的解析式為y=x+3-2

情況2:如圖②,當(dāng)SAPT:S四邊形PTBC=2:1時(shí),則SAPT=SABC,

,∴AT==2,∴OT=2-,

∴點(diǎn)T的坐標(biāo)為(2-,0).

將點(diǎn)T的坐標(biāo)代入y=x+m得,m=3-2,

∴直線MN的解析式為y=x+3-2

綜上所述,直線MN的解析式為:y=x+3-2y=x+3-2

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)(x>0)的圖象交于A(2,﹣1),B(,n)兩點(diǎn),直線y=2與y軸交于點(diǎn)C.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知,如圖AB是圓O的直徑,射線AMAB于點(diǎn)A.點(diǎn)DAM上,連接OD交圓O于點(diǎn)E,過(guò)點(diǎn)DDC=DA.交圓O于點(diǎn)CA,C不重合),連接BCCE

1)求證:CD是圓O的切線;

2)若四邊形OECB是菱形,圓O的直徑AB=2,求AD的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于二次函數(shù),有下列結(jié)論:①其圖象與x軸一定相交;②若,函數(shù)在時(shí),yx的增大而減。虎蹮o(wú)論a取何值,拋物線的頂點(diǎn)始終在同一條直線上;④無(wú)論a取何值,函數(shù)圖象都經(jīng)過(guò)同一個(gè)點(diǎn).其中所有正確的結(jié)論是___.(填寫(xiě)正確結(jié)論的序號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知:如圖,在直角坐標(biāo)系中,有菱形,點(diǎn)的坐標(biāo)為,對(duì)角線相交于點(diǎn),反比例函數(shù)經(jīng)過(guò)點(diǎn),交的延長(zhǎng)線于點(diǎn),且,則點(diǎn)的坐標(biāo)是( )

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知反比例函數(shù)y= 與一次函數(shù)y=x+b的圖形在第一象限相交于點(diǎn)A1,k+4).

1)試確定這兩函數(shù)的表達(dá)式;

2)求出這兩個(gè)函數(shù)圖象的另一個(gè)交點(diǎn)B的坐標(biāo),并求AOB的面積;

3)根據(jù)圖象直接寫(xiě)出反比例函數(shù)值大于一次函數(shù)值的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,ABC內(nèi)接于O,B=60°,CD是O的直徑,點(diǎn)P是CD延長(zhǎng)線上一點(diǎn),且AP=AC.

(1)求證:PA是O的切線;

(2)若PD=1,求O的直徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在ABC中,ABAC,以AB為直徑作圓交BCD,過(guò)D作⊙O的切線EFACE,交AB延長(zhǎng)線于F

1)求證:DEAC

2)若BD2tanCDE,求BF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某工廠為了檢驗(yàn)甲、乙兩個(gè)車(chē)間生產(chǎn)的同一款產(chǎn)品的質(zhì)量情況,進(jìn)行了抽樣調(diào)查,請(qǐng)補(bǔ)充完整.

收集數(shù)據(jù) 從甲、乙兩個(gè)車(chē)間各隨機(jī)抽取20個(gè)樣品,進(jìn)行了檢測(cè),檢測(cè)結(jié)果(單位:mm)如下:

甲車(chē)間

168

175

180

185

172

189

185

182

185

174

192

180

185

178

173

185

169

187

176

180

乙車(chē)間

186

180

189

183

176

173

178

167

180

175

178

182

180

179

185

180

184

182

180

183

整理、描述數(shù)據(jù) 按如下分段整理、描述這兩組樣本數(shù)據(jù):

165.5-170.5

170.5-175.5

175.5-180.5

180.5-185.5

185.5-190.5

190.5-195.5

甲車(chē)間

2

4

5

6

2

1

乙車(chē)間

(說(shuō)明:尺寸范圍為176mm190mm的產(chǎn)品為合格)

分析數(shù)據(jù) 兩組樣本數(shù)據(jù)的平均數(shù)、眾數(shù)、中位數(shù)、方差如下表所示:

平均數(shù)

眾數(shù)

中位數(shù)

方差

甲車(chē)間

180

185

180

43.1

乙車(chē)間

180

180

180

22.6

得出結(jié)論

1)補(bǔ)全上列表格;

2)若乙車(chē)間生產(chǎn)1000個(gè)該款產(chǎn)品,估計(jì)其中合格產(chǎn)品約有 個(gè);

3)可以推斷出 車(chē)間生產(chǎn)的該款產(chǎn)品更好,理由為

查看答案和解析>>

同步練習(xí)冊(cè)答案