【題目】如圖,四邊形ABCD是正方形,直線(xiàn)a,b,c分別通過(guò)A、D、C三點(diǎn),且a∥b∥c.若a與b之間的距離是5,b與c之間的距離是7,則正方形ABCD的面積是( )
A.70B.74C.144D.148
【答案】B
【解析】
過(guò)A作AM⊥直線(xiàn)b于M,過(guò)D作DN⊥直線(xiàn)c于N,求出∠AMD=∠DNC=90°,AD=DC,∠1=∠3,根據(jù)AAS推出△AMD≌△CND,根據(jù)全等得出AM=CN,求出AM=CN=5,DN=7,在Rt△DNC中,由勾股定理求出DC2即可.
解:如圖:
過(guò)A作AM⊥直線(xiàn)b于M,過(guò)D作DN⊥直線(xiàn)c于N,
則∠AMD=∠DNC=90°,
∵直線(xiàn)b∥直線(xiàn)c,DN⊥直線(xiàn)c,
∴∠2+∠3=90°,
∵四邊形ABCD是正方形,
∴AD=DC,∠1+∠2=90°,
∴∠1=∠3,
在△AMD和△CND中
∴△AMD≌△CND,
∴AM=CN,
∵a與b之間的距離是5,b與c之間的距離是7,
∴AM=CN=5,DN=7,
在Rt△DNC中,由勾股定理得:DC2=DN2+CN2=72+52=74,
即正方形ABCD的面積為74,
故選:B.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,已知點(diǎn)D,E,F分別為BC,AD,AE的中點(diǎn),且S△ABC=4cm2,則陰影部分面積S=( )cm2.
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程x2+2kx+k2+k+3=0的兩根分別是x1、x2,則(x1﹣1)2+(x2﹣1)2的最小值是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】中,.設(shè)的面積為.
①圖1中,為中點(diǎn),,,,是上的四點(diǎn);
②圖2中,,,,,,,交于點(diǎn);
③圖3中,,D為中點(diǎn),.
其中,陰影部分面積為的是______(填序號(hào)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知RtΔABC,∠C=90°,D為BC的中點(diǎn).以AC為直徑的圓O交AB于點(diǎn)E.
(1)求證:DE是圓O的切線(xiàn).
(2)若AE:EB=1:2,BC=6,求AE的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABE中,∠BAE=105°,AE的垂直平分線(xiàn)MN交BE于點(diǎn)C,且AB=CE,則∠B的度數(shù)是( )
A. 45°B. 60°C. 50°D. 55°
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等邊三角形,點(diǎn)D、E分別是直線(xiàn)BC、AC上的點(diǎn),且BD=CE.
(1)如圖①,當(dāng)點(diǎn)D、E分別在線(xiàn)段BC、AC上時(shí),BE與AD相交于點(diǎn)F.求∠AFB的度數(shù).
(2)如圖②,當(dāng)點(diǎn)D在CB的延長(zhǎng)線(xiàn)上,點(diǎn)E在AC的延長(zhǎng)線(xiàn)上時(shí),CF為△ABC的高線(xiàn)則線(xiàn)段CD、AF、CE、之間的數(shù)量關(guān)系是 ,并加以證明.
(3)在①的條件下,連接FC,如圖③,若∠DFC=90°,AF= 3,求BF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC的邊AB,AC的外側(cè)分別作等邊△ABD和等邊△ACE,連接DC,BE.
(1)求證:DC=BE;
(2)若BD=3,BC=4, BD⊥BC于點(diǎn)B,請(qǐng)求出△ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com