【題目】已知關(guān)于x的方程x2+2kx+k2+k+3=0的兩根分別是x1、x2,則(x1﹣1)2+(x2﹣1)2的最小值是_____

【答案】8

【解析】∵關(guān)于x的方程x2+2kx+k2+k+3=0的兩根分別是x1、x2,

x1+x2=﹣2k,x1x2=k2+k+3,

∵△=4k2﹣4(k2+k+3)=﹣4k﹣120,解得k﹣3,

(x1﹣1)2+(x2﹣1)2

=x12﹣2x1+1+x22﹣2x2+1

=(x1+x22﹣2x1x2﹣2(x1+x2+2

=(﹣2k)2﹣2(k2+k+3)﹣2(﹣2k)+2

=2k2+2k﹣4

=2k+2

當(dāng)k=-3時,(x1﹣1)2+(x2﹣1)2的值最小,最小為8.

故(x1﹣1)2+(x2﹣1)2的最小值是8.

故答案為:8.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】解下列方程:

(1)2x2-4x-1=0(配方法);

(2)(x+1)2=6x+6.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知拋物線y=ax2+bx+cx軸交于點(diǎn)A(1,0),B(3,0),且過點(diǎn)C(0,-3).

(1)求拋物線的解析式和頂點(diǎn)坐標(biāo);

(2)請你寫出一種平移的方法,使平移后拋物線的頂點(diǎn)落在直線y=-x上,并寫出平移后拋物線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,ABC是邊長3cm的等邊三角形.動點(diǎn)P1cm/s的速度從點(diǎn)A出發(fā),沿線段AB向點(diǎn)B運(yùn)動.

(1)如圖1,設(shè)點(diǎn)P的運(yùn)動時間為ts),那么t   s)時,PBC是直角三角形;

(2)如圖2,若另一動點(diǎn)Q從點(diǎn)B出發(fā),沿線段BC向點(diǎn)C運(yùn)動,如果動點(diǎn)P、Q都以1cm/s的速度同時出發(fā).設(shè)運(yùn)動時間為ts),那么t為何值時,PBQ是直角三角形?

(3)如圖3,若另一動點(diǎn)Q從點(diǎn)C出發(fā),沿射線BC方向運(yùn)動.連接PQACD.如果動點(diǎn)P、Q都以1cm/s的速度同時出發(fā).設(shè)運(yùn)動時間為ts),那么t為何值時,DCQ是等腰三角形?

(4)如圖4,若另一動點(diǎn)Q從點(diǎn)C出發(fā),沿射線BC方向運(yùn)動.連接PQACD,連接PC.如果動點(diǎn)PQ都以1cm/s的速度同時出發(fā).請你猜想:在點(diǎn)P、Q的運(yùn)動過程中,PCDQCD的面積有什么關(guān)系?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校組織團(tuán)員舉行申奧成功宣傳活動,從學(xué)校騎車出發(fā),先上坡到達(dá)A地后,宣傳8分鐘;然后下坡到B地宣傳8分鐘返回,行程情況如圖.若返回時,上、下坡速度仍保持不變,在A地仍要宣傳8分鐘,那么他們從B地返回學(xué)校用的時間是(

A. 45.2分鐘 B. 48分鐘 C. 46分鐘 D. 33分鐘

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校八年級全體同學(xué)參加了某項(xiàng)捐款活動,隨機(jī)抽查了部分同學(xué)捐款的情況統(tǒng)計(jì)如圖所示

(1)本次共抽查學(xué)生____人,并將條形圖補(bǔ)充完整;

(2)捐款金額的眾數(shù)是_____,平均數(shù)是_____;

(3)在八年級700名學(xué)生中,捐款20元及以上(20)的學(xué)生估計(jì)有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y =(2m+1) x+ m-3

(1) 若函數(shù)圖象經(jīng)過原點(diǎn),m的值.

(2) 若函數(shù)圖象在y軸的交點(diǎn)的縱坐標(biāo)為-2,求m的值.

(3)若函數(shù)的圖象平行直線y=-3x–3,求m的值.

(4)若這個函數(shù)是一次函數(shù),y隨著x的增大而減小,m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知 a b a b 兩個數(shù)在數(shù)軸上對應(yīng)的點(diǎn)分別為點(diǎn) A 、點(diǎn) B ,求 A 、 B 兩點(diǎn)之間的距離.

(探索)

小明利用絕對值的概念,結(jié)合數(shù)軸,進(jìn)行探索:

1)補(bǔ)全小明的探索

(應(yīng)用)

2)若點(diǎn)C 對應(yīng)的數(shù)c ,數(shù)軸上點(diǎn)C AB 兩點(diǎn)的距離相等,求c .(用含ab 的代數(shù)式表示)

3)若點(diǎn) D對應(yīng)的數(shù) d ,數(shù)軸上點(diǎn) D A 的距離是點(diǎn) D B 的距離的nn 0 倍,請?zhí)剿?/span> n 的取值范圍與點(diǎn) D 個數(shù)的關(guān)系,并直接寫出a、b d、n 的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】類比學(xué)習(xí):一動點(diǎn)沿著數(shù)軸向右平移3個單位,再向左平移個單位,相當(dāng)于向右平移1個單位.用實(shí)數(shù)加法表示為

若坐標(biāo)平面上的點(diǎn)作如下平移:沿軸方向平移的數(shù)量為(向右為正,向左為負(fù),平移個單位),沿軸方向平移的數(shù)量為(向上為正,向下為負(fù),平移個單位),則把有序數(shù)對{,}叫做這一平移的“平移量”;“平移量”{}與“平移量”{,}的加法運(yùn)算法則為

解決問題:(1)計(jì)算:{3,1}+{1,2};{1,2}+{3,1}

2動點(diǎn)P從坐標(biāo)原點(diǎn)O出發(fā),先按照“平移量”{31}平移到A,再按照“平移量”{1,2}平移到B;若先把動點(diǎn)P按照“平移量”{1,2}平移到C,再按照“平移量”{3,1}平移,最后的位置還是點(diǎn)B嗎?在圖中畫出四邊形OABC.

證明四邊形OABC是平行四邊形.

查看答案和解析>>

同步練習(xí)冊答案