如圖,二次函數(shù)的圖象交x軸于A(﹣1,0),B(2,0),交y軸于C(0,﹣2),過(guò)A,C畫直線.
(1)求二次函數(shù)的解析式;
(2)點(diǎn)P在x軸正半軸上,且PA=PC,求OP的長(zhǎng);
(3)點(diǎn)M在二次函數(shù)圖象上,以M為圓心的圓與直線AC相切,切點(diǎn)為H.
①若M在y軸右側(cè),且△CHM∽△AOC(點(diǎn)C與點(diǎn)A對(duì)應(yīng)),求點(diǎn)M的坐標(biāo);
②若⊙M的半徑為 ,求點(diǎn)M的坐標(biāo).
(1)拋物線的解析式為y=x2﹣x﹣2;
(2)OP=
(3)①M(fèi)′(,),
②點(diǎn)M的坐標(biāo)為(,3+)或(,3﹣).

試題分析:(1)根據(jù)與x軸的兩個(gè)交點(diǎn)A、B的坐標(biāo),設(shè)出二次函數(shù)交點(diǎn)式解析式y(tǒng)=a(x+1)(x﹣2),然后把點(diǎn)C的坐標(biāo)代入計(jì)算求出a的值,即可得到二次函數(shù)解析式;
(2)設(shè)OP=x,然后表示出PC、PA的長(zhǎng)度,在Rt△POC中,利用勾股定理列式,然后解方程即可;
(3)①根據(jù)相似三角形對(duì)應(yīng)角相等可得∠MCH=∠CAO,然后分(i)點(diǎn)H在點(diǎn)C下方時(shí),利用同位角相等,兩直線平行判定CM∥x軸,從而得到點(diǎn)M的縱坐標(biāo)與點(diǎn)C的縱坐標(biāo)相同,是﹣2,代入拋物線解析式計(jì)算即可;(ii)點(diǎn)H在點(diǎn)C上方時(shí),根據(jù)(2)的結(jié)論,點(diǎn)M為直線PC與拋物線的另一交點(diǎn),求出直線PC的解析式,與拋物線的解析式聯(lián)立求解即可得到點(diǎn)M的坐標(biāo);
②在x軸上取一點(diǎn)D,過(guò)點(diǎn)D作DE⊥AC于點(diǎn)E,可以證明△AED和△AOC相似,根據(jù)相似三角形對(duì)應(yīng)邊成比例列式求解即可得到AD的長(zhǎng)度,然后分點(diǎn)D在點(diǎn)A的左邊與右邊兩種情況求出OD的長(zhǎng)度,從而得到點(diǎn)D的坐標(biāo),再作直線DM∥AC,然后求出直線DM的解析式,與拋物線解析式聯(lián)立求解即可得到點(diǎn)M的坐標(biāo).
試題解析:(1)設(shè)該二次函數(shù)的解析式為:y=a(x+1)(x﹣2),
將x=0,y=﹣2代入,得﹣2=a(0+1)(0﹣2),
解得a=1,
∴拋物線的解析式為y=(x+1)(x﹣2),
即y=x2﹣x﹣2;
(2)設(shè)OP=x,則PC=PA=x+1,
在Rt△POC中,由勾股定理,得x2+22=(x+1)2
解得,x=,
即OP=
(3)①∵△CHM∽△AOC,
∴∠MCH=∠CAO,
(i)如圖1,當(dāng)H在點(diǎn)C下方時(shí),
∵∠OAC+∠OCA=90°,∠MCH=∠OAC
∴∠OCA+∠MCH=90°
∴∠OCM=90°=∠AOC
∴CM∥x軸
∴yM=﹣2,
∴x2﹣x﹣2=﹣2,
解得x1=0(舍去),x2=1,
∴M(1,﹣2),
(ii)如圖1,當(dāng)H在點(diǎn)C上方時(shí),
∵∠MCH=∠CAO,
∴PA=PC,由(2)得,M′為直線CP與拋物線的另一交點(diǎn),
設(shè)直線CM的解析式為y=kx﹣2,
把P(,0)的坐標(biāo)代入,得k﹣2=0,
解得k=,
∴y=x﹣2,
x﹣2=x2﹣x﹣2,
解得x1=0(舍去),x2=
此時(shí)y=×﹣2=,
∴M′(,),
②在x軸上取一點(diǎn)D,如圖(備用圖),過(guò)點(diǎn)D作DE⊥AC于點(diǎn)E,使DE=
在Rt△AOC中,AC==
∵∠COA=∠DEA=90°,∠OAC=∠EAD,
∴△AED∽△AOC,
,
解得AD=2,
∴D(1,0)或D(﹣3,0).
過(guò)點(diǎn)D作DM∥AC,交拋物線于M,如圖(備用圖)
則直線DM的解析式為:y=﹣2x+2或y=﹣2x﹣6,
當(dāng)﹣2x﹣6=x2﹣x﹣2時(shí),即x2+x+4=0,方程無(wú)實(shí)數(shù)根,
當(dāng)﹣2x+2=x2﹣x﹣2時(shí),即x2+x﹣4=0,解得x1=,x2=,
∴點(diǎn)M的坐標(biāo)為(,3+)或(,3﹣).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

己知:二次函數(shù)y=ax2+bx+6(a≠0)與x軸交于A、B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè))點(diǎn)
A、點(diǎn)B的橫坐標(biāo)是一元二次方程x2-4x-12=0的兩個(gè)根.
(1)請(qǐng)直接寫出點(diǎn)A、點(diǎn)B的坐標(biāo).
(2)請(qǐng)求出該二次函數(shù)表達(dá)式及對(duì)稱軸和頂點(diǎn)坐標(biāo).
(3)如圖1,在二次函數(shù)對(duì)稱軸上是否存在點(diǎn)P,使△APC的周長(zhǎng)最小,若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
(4)如圖2,連接AC、BC,點(diǎn)Q是線段0B上一個(gè)動(dòng)點(diǎn)(點(diǎn)Q不與點(diǎn)0、B重合).過(guò)點(diǎn)Q作QD∥AC交BC于點(diǎn)D,設(shè)Q點(diǎn)坐標(biāo)(m,0),當(dāng)△CDQ面積S最大時(shí),求m的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

對(duì)于二次函數(shù)y=x2-3x+2和一次函數(shù)y=-2x+4,把函數(shù)y=t(x2-3x+2)+(1-t)(-2x+4)(t為常數(shù))稱為這兩個(gè)函數(shù)的“衍生二次函數(shù)”.已知不論t取何常數(shù),這個(gè)函數(shù)永遠(yuǎn)經(jīng)過(guò)某些定點(diǎn),則這個(gè)函數(shù)必經(jīng)過(guò)的定點(diǎn)坐標(biāo)為         

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,若拋物線Y=X2  改為拋物線Y= X2+BX+C 其他條件不變  求矩形ABCD的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

請(qǐng)寫出一個(gè)開(kāi)口向下,對(duì)稱軸為直線的拋物線的解析式,y=                 .?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,矩形ABCD中,AB=3,BC=5,點(diǎn)P是BC邊上的一個(gè)動(dòng)點(diǎn)(點(diǎn)P不與點(diǎn)B,C重合),現(xiàn)將△PCD沿直線PD折疊,使點(diǎn)C落下點(diǎn)C′處;作∠BPC′的平分線交AB于點(diǎn)E.設(shè)BP=x,BE=y,那么y關(guān)于x的函數(shù)圖象大致應(yīng)為( 。
A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖在Rt△ABC中,∠ACB=90°,∠BAC=30°,AB=2,D是AB邊上的一個(gè)動(dòng)點(diǎn)(不與點(diǎn)A、B重合),過(guò)點(diǎn)D作CD的垂線交射線CA于點(diǎn)E.設(shè)AD=x,CE=y,則下列圖象中,能表示y與x的函數(shù)關(guān)系圖象大致是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

在矩形ABCD中,AB=2,BC=6,點(diǎn)E為對(duì)角線AC的中點(diǎn),點(diǎn)P在邊BC上,連接PE、PA.當(dāng)點(diǎn)P在BC上運(yùn)動(dòng)時(shí),設(shè)BP=x,△APE的周長(zhǎng)為y,下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是(   )

A. B.  C.  D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,拋物線y=ax2+bx+c與x軸交于點(diǎn)A(﹣1,0),頂點(diǎn)坐標(biāo)為(1,n),與y軸的交點(diǎn)在(0,2)、(0,3)之間(包含端點(diǎn)),則下列結(jié)論:①當(dāng)x>3時(shí),y<0;②3a+b>0;③﹣1≤a≤﹣;④3≤n≤4中,正確的是( 。
A.①②B.③④C.①④D.①③

查看答案和解析>>

同步練習(xí)冊(cè)答案