【題目】已知方程3xm-13yn=7x是二元一次方程,則m+n=______.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】隨著人們“節(jié)能環(huán)保,綠色出行”意識的增強(qiáng),越來越多的人喜歡騎自行車出行,也給自行車商家?guī)砩虣C(jī).某自行車行經(jīng)營的A型自行車去年銷售總額為8萬元.今年該型自行車每輛售價(jià)預(yù)計(jì)比去年降低200元.若該型車的銷售數(shù)量與去年相同,那么今年的銷售總額將比去年減少10%,求:
(1)A型自行車去年每輛售價(jià)多少元?
(2)該車行今年計(jì)劃新進(jìn)一批A型車和新款B型車共60輛,且B型車的進(jìn)貨數(shù)量不超過A型車數(shù)量的兩倍.已知,A型車和B型車的進(jìn)貨價(jià)格分別為1500元和1800元,計(jì)劃B型車銷售價(jià)格為2400元,應(yīng)如何組織進(jìn)貨才能使這批自行車銷售獲利最多?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,為了躲避臺風(fēng),一輪船一直由西向東航行,上午10點(diǎn),在A處測得小島P的方向是北偏東75°,以每小時(shí)15海里的速度繼續(xù)向東航行,中午12點(diǎn)到達(dá)B處,并測得小島P的方向是北偏東60°,若小島周圍25海里內(nèi)有暗礁,問該輪船是否能一直向東航行?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,矩形OABC的頂點(diǎn)B在第一象限,點(diǎn)C在x軸上,點(diǎn)A在y軸上,D、E分別是AB,OA中點(diǎn).過點(diǎn)D的雙曲線與BC交于點(diǎn)G.連接DC,F在DC上,且DF:FC=3:1,連接DE,EF.若△DEF的面積為6,則k的值為( 。
A. B. C. 6 D. 10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【探索新知】
如圖1,點(diǎn)C將線段AB分成AC和BC兩部分,若BC= AC,則稱點(diǎn)C是線段AB的圓周率點(diǎn),線段AC、BC稱作互為圓周率伴侶線段.
(1)若AC=3,則AB=_____;
(2)若點(diǎn)D也是圖1中線段AB的圓周率點(diǎn)(不同于C點(diǎn)),則AC_____DB;(填“=”或“≠”)
【深入研究】
如圖2,現(xiàn)有一個(gè)直徑為1個(gè)單位長度的圓片,將圓片上的某點(diǎn)與數(shù)軸上表示1的點(diǎn)重合,并把圓片沿?cái)?shù)軸向右無滑動地滾動1周,該點(diǎn)到達(dá)點(diǎn)C的位置.
(3)若點(diǎn)M、N均為線段OC的圓周率點(diǎn),求線段MN的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系中,拋物線與軸交于兩點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)),與軸交于點(diǎn),點(diǎn)的坐標(biāo)為,將直線沿軸向上平移4個(gè)單位長度后恰好經(jīng)過兩點(diǎn)。
(1)求直線及拋物線的解析式;
(2)將直線沿軸向上平移5個(gè)單位長度后與拋物線交于兩點(diǎn),若點(diǎn)是拋物線位于直線下方的一個(gè)動點(diǎn),連接,交直線于點(diǎn),連接和。設(shè)的面積為,當(dāng)S取得最大值時(shí),求出此時(shí)點(diǎn)的坐標(biāo)及的最大值;
(3)如圖2,記(2)問中直線與軸交于點(diǎn),現(xiàn)有一點(diǎn)從點(diǎn)出發(fā),先沿軸到達(dá)點(diǎn),再沿到達(dá)點(diǎn),已知點(diǎn)在軸上運(yùn)動的速度是每秒2個(gè)單位長度,它在直線上運(yùn)動速度是1個(gè)單位長度。現(xiàn)要使點(diǎn)按照上述要求到達(dá)點(diǎn)所用的時(shí)間最短,請簡述確定點(diǎn)位置的過程,求出點(diǎn)的坐標(biāo),不要求證明。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,D為BC邊的中點(diǎn),AE∥BC.
(1)作∠ADC的平分線DF,與AE交于點(diǎn)F;(用尺規(guī)作圖,保留作圖痕跡,不寫作法)
(2)在(1)的條件下,若AD=2,求DF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在△ABC中,CA=CB,在△AED中, DA=DE,點(diǎn)D、E分別在CA、AB上.
(1)如圖①,若∠ACB=∠ADE=90°,則CD與BE的數(shù)量關(guān)系是 ;
(2)若∠ACB=∠ADE=120°,將△AED繞點(diǎn)A旋轉(zhuǎn)至如圖②所示的位置,求CD與BE的數(shù)量關(guān)系;
(3)若∠ACB=∠ADE=2α(0°< α < 90°),將△AED繞點(diǎn)A旋轉(zhuǎn)至如圖③所示的位置,探究線段CD與BE的數(shù)量關(guān)系,并加以證明(用含α的式子表示).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com