【題目】隨著人們“節(jié)能環(huán)保,綠色出行”意識的增強,越來越多的人喜歡騎自行車出行,也給自行車商家?guī)砩虣C.某自行車行經(jīng)營的A型自行車去年銷售總額為8萬元.今年該型自行車每輛售價預計比去年降低200元.若該型車的銷售數(shù)量與去年相同,那么今年的銷售總額將比去年減少10%,求:
(1)A型自行車去年每輛售價多少元?
(2)該車行今年計劃新進一批A型車和新款B型車共60輛,且B型車的進貨數(shù)量不超過A型車數(shù)量的兩倍.已知,A型車和B型車的進貨價格分別為1500元和1800元,計劃B型車銷售價格為2400元,應如何組織進貨才能使這批自行車銷售獲利最多?

【答案】
(1)解:設去年A型車每輛售價x元,則今年售價每輛為(x﹣200)元,由題意,得

=

解得:x=2000.

經(jīng)檢驗,x=2000是原方程的根.

答:去年A型車每輛售價為2000元


(2)解:設今年新進A型車a輛,則B型車(60﹣a)輛,獲利y元,由題意,得

y=(1800﹣1500)a+(2400﹣1800)(60﹣a),

y=﹣300a+36000.

∵B型車的進貨數(shù)量不超過A型車數(shù)量的兩倍,

∴60﹣a≤2a,

∴a≥20.

∵y=﹣300a+36000.

∴k=﹣300<0,

∴y隨a的增大而減小.

∴a=20時,y最大=30000元.

∴B型車的數(shù)量為:60﹣20=40輛.

∴當新進A型車20輛,B型車40輛時,這批車獲利最大


【解析】(1)設去年A型車每輛售價x元,則今年售價每輛為(x﹣200)元,由賣出的數(shù)量相同建立方程求出其解即可;(2)設今年新進A型車a輛,則B型車(60﹣a)輛,獲利y元,由條件表示出y與a之間的關系式,由a的取值范圍就可以求出y的最大值.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】為了打造區(qū)域中心城市,實現(xiàn)攀枝花跨越式發(fā)展,我市花城新區(qū)建設正按投資計劃有序推進.花城新區(qū)建設工程部,因道路建設需要開挖土石方,計劃每小時挖掘土石方540m3 , 現(xiàn)決定向某大型機械租賃公司租用甲、乙兩種型號的挖掘機來完成這項工作,租賃公司提供的挖掘機有關信息如下表所示:

租金(單位:元/臺時)

挖掘土石方量(單位:m3/臺時)

甲型挖掘機

100

60

乙型挖掘機

120

80


(1)若租用甲、乙兩種型號的挖掘機共8臺,恰好完成每小時的挖掘量,則甲、乙兩種型號的挖掘機各需多少臺?
(2)如果每小時支付的租金不超過850元,又恰好完成每小時的挖掘量,那么共有哪幾種不同的租用方案?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算:(-3x-4y)(3x-4y= ______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某車隊要把4000噸貨物運到雅安地震災區(qū)(方案定后,每天的運量不變)。
(1)從運輸開始,每天運輸?shù)呢浳飮崝?shù)n(單位:噸)與運輸時間t(單位:天)之間有怎樣的函數(shù)關系式?
(2)因地震,到災區(qū)的道路受阻,實際每天比原計劃少運20%,則推遲1天完成任務,求原計劃完成任務的天數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知菱形的邊長為2,=60°,對角線,相交于點O.以點O為坐標原點,分別以所在直線為x軸、y軸,建立如圖所示的直角坐標系.以為對角線作菱形菱形,再以為對角線作菱形菱形,再以為對角線作菱形菱形,,按此規(guī)律繼續(xù)作下去,在x軸的正半軸上得到點,,......,,則點的坐標為________.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A(﹣1,0),B(3,0),C(0,2),CD∥x軸,CD=AB.

(1)求點D的坐標:
(2)四邊形OCDB的面積S四邊形OCDB;
(3)在 y軸上是否存在點P,使SPAB=S四邊形OCDB?若存在,求出點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】若方程ax2+bx+c=0(a≠0)中,a,b,c滿足a+b+c=0a﹣b+c=0,則方程的根是( 。

A. 1,0 B. ﹣1,0 C. 1,﹣1 D. 無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】定義運算 = ,若a≠﹣1,b≠﹣1,則下列等式中不正確的是(
A. × =1
B. + =
C.( 2=
D. =1

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC中,BO平分∠ABC,CO平分∠ACB,MN過點O,交AB于M,交AC于N,且MN∥BC,若AB=12cm,AC=18cm,則△AMN周長為

查看答案和解析>>

同步練習冊答案