【題目】6m2n2mn2的公因式是________;2am﹣n)與36n﹣m)的公因式是________

【答案】 2mn 2m﹣n

【解析】根據(jù)公因式的確定方法:①系數(shù)取最大公約數(shù),②字母取公共的字母③指數(shù)取最小的,可得到答案.

解:①系數(shù)6,2的最大公約數(shù)是:2字母取m,n,指數(shù):m1次,n1次,

∴公因式是:2mn,

②系數(shù)2,36的最大公約數(shù)是:2

字母。mn),指數(shù):(mn)取1次,

∴公因式是:2mn),

故答案為:2mn,2mn).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x+y0.2,2x+3y2.2,則x2+4xy+4y2_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在圓錐、圓柱、球、正方體這四個(gè)幾何體中,主視圖不可能是多邊形的是( )

A. 圓錐 B. 圓柱 C. D. 正方體

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=(x+2)2+m的圖象與y軸交于點(diǎn)C,點(diǎn)B在拋物線上,且與點(diǎn)C關(guān)于拋物線的對稱軸對稱,已知一次函數(shù)y=kx+b的圖象經(jīng)過該二次函數(shù)圖象上的點(diǎn)A(﹣1,0)及點(diǎn)B.

(1)求二次函數(shù)與一次函數(shù)的解析式;

(2)根據(jù)圖象,寫出滿足(x+2)2+m≥kx+b的x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,轉(zhuǎn)盤上1、2、3、4四個(gè)數(shù)字分別代表雞、猴、鼠、羊四種生肖郵票(每種郵票各兩枚,雞年郵票面值“80分”,其它郵票都是面值“1.20元”),轉(zhuǎn)動(dòng)轉(zhuǎn)盤后,指針每落在某個(gè)數(shù)字所在扇形一次就表示獲得該種郵票一枚.

(1)任意轉(zhuǎn)動(dòng)轉(zhuǎn)盤一次,獲得猴年郵票的概率是 ;

(2)任意轉(zhuǎn)動(dòng)轉(zhuǎn)盤兩次,求獲得的兩枚郵票可以郵寄一封需2.4元郵資的信件的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,P為正方形ABCD的邊BC上一動(dòng)點(diǎn)(PB、C不重合),連接AP,過點(diǎn)BBQ⊥APCD于點(diǎn)Q,將△BQC沿BQ所在的直線對折得到△BQC′,延長QC′BA的延長線于點(diǎn)M

1)試探究APBQ的數(shù)量關(guān)系,并證明你的結(jié)論;

2)當(dāng)AB=3,BP=2PC,求QM的長;

3)當(dāng)BP=m,PC=n時(shí),求AM的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖①,直線ABCD,EABAD之間的一點(diǎn),連接BE,CE,可以發(fā)現(xiàn)∠B+C=BEC

證明過程如下:

證明:過點(diǎn)EEFAB

ABDC,EFAB(輔助線的作法),

EFDC

∴∠C=CEF

EFAB,∴∠B=BEF

∴∠B+C=CEF+BEF

即∠B+C=BEC

2)如果點(diǎn)E運(yùn)動(dòng)到圖②所示的位置,其他條件不變,∠BC,BEC又有什么關(guān)系?并證明你的結(jié)論;

3)如圖③ABDC,C=120°AEC=80°,則∠A=      .(寫出結(jié)論,不用寫計(jì)算過程)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知, 是一次函數(shù)的圖象和反比例函數(shù)的圖象的兩個(gè)交點(diǎn).

(1) 求一次函數(shù)、反比例函數(shù)的關(guān)系式;

(2) 求△AOB的面積.

(3) 當(dāng)自變量x滿足什么條件時(shí),y1>y2 .(直接寫出答案)

(4)將反比例函數(shù)的圖象向右平移n(n>0)個(gè)單位,得到的新圖象經(jīng)過點(diǎn)(3,-4),求對應(yīng)的函數(shù)關(guān)系式y(tǒng)3.(直接寫出答案)

查看答案和解析>>

同步練習(xí)冊答案