【題目】如圖,在平面直角坐標系中,△ABC的三個頂點坐標分別為A1,﹣4)、B3,﹣3)、C1,﹣1)(每個小方格都是邊長為一個單位長度的正方形).

1)請畫出△ABC關(guān)于原點對稱的△A1B1C1,并寫出A1B1,C1的坐標;

2)請畫出△ABC繞點B逆時針旋轉(zhuǎn)90°后的△A2B2C2

【答案】1)見解析,點A1,B1,C1的坐標分別為(﹣14),(﹣3,3),(﹣1,1);(2)見解析.

【解析】

1)根據(jù)中心對稱圖形的概念即可作出圖形,求出對應(yīng)點坐標;

2)根據(jù)旋轉(zhuǎn)作圖的方法即可.

1)如圖,△A1B1C1為所作,點A1,B1,C1的坐標分別為(﹣1,4),(﹣3,3),(﹣1,1);

2)如圖,△A2B2C2為所作.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(7分)某中學(xué)1000名學(xué)生參加了環(huán)保知識競賽,為了了解本次競賽成績情況,從中抽取了部分學(xué)生的成績(得分取整數(shù),滿分為100分)作為樣本進行統(tǒng)計,并制作了如圖頻數(shù)分布表和頻數(shù)分布直方圖(不完整且局部污損,其中“■”表示被污損的數(shù)據(jù)).請解答下列問題:

成績分組

頻數(shù)

頻率

50≤x<60

8

0.16

60≤x<70

12

a

70≤x<80

0.5

80≤x<90

3

0.06

90≤x≤100

b

c

合計

1

(1)寫出a,b,c的值;

(2)請估計這1000名學(xué)生中有多少人的競賽成績不低于70分;

(3)在選取的樣本中,從競賽成績是80分以上(含80分)的同學(xué)中隨機抽取兩名同學(xué)參加環(huán)保知識宣傳活動,求所抽取的2名同學(xué)來自同一組的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為倡導(dǎo)低碳生活,常選擇以自行車作為代步工具.如圖1所示是一輛自行車的實物圖,車架檔ACCD的長分別為45cm,60cm,且它們互相垂直,座桿CE的長為20cm,車輪半徑28cm,點A,C,E在同一條直線上,且∠CAB=75°,如圖2

1 2

(1)求車座點E到地面的距離;(結(jié)果精確到1cm)

(2)求車把點D到車架檔直線AB的距離.(結(jié)果精確到1cm).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為了了解班級學(xué)生數(shù)學(xué)課前預(yù)習(xí)的具體情況,鄭老師對本班部分學(xué)生進行了為期一個月的跟蹤調(diào)查,他將調(diào)查結(jié)果分為四類:A:很好;B:較好;C:一般;D:不達標,并將調(diào)查結(jié)果繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:

1C類女生有   名,D類男生有   名,將上面條形統(tǒng)計圖補充完整;

2)扇形統(tǒng)計圖中課前預(yù)習(xí)不達標對應(yīng)的圓心角度數(shù)是   

3)為了共同進步,鄭老師想從被調(diào)查的A類和D類學(xué)生中各隨機機抽取一位同學(xué)進行一幫一互助學(xué)習(xí),請用畫樹狀圖或列表的方法求出所選兩位同學(xué)恰好是一男一女同學(xué)的概率,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ABC是一塊等邊三角形的廢鐵片,其中AB=AC=10BC=12.利用其剪裁一個正方形DEFG,使正方形的一條邊DE落在BC上,頂點F G分別落在AC、AB上.

1)小聰想:要畫出正方形DEFG,只要能計算出正方形的邊長就能求出BDCE的長,從而確定D點和E點,再畫正方形DEFG就容易了.請你幫小聰求出正方形的邊長.

2)小明想:不求正方形的邊長也能畫出正方形.具體作法是:

①在AB邊上任取一點G′,如圖2作正方形G′D′E′F′;

②連接BF′并延長交AC于點F

③過點FFEF′E′BC于點E,FGF′G′AB于點GGDG′D′BC于點D,則四邊形DEFG即為所求的正方形.你認為小明的作法正確嗎?說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】1)如圖1,點P是等邊△ABC內(nèi)一點,已知PA3,PB4,PC5,求∠APB的度數(shù).

要直接求∠A的度數(shù)顯然很因難,注意到條件中的三邊長恰好是一組勾股數(shù),因此考慮借助旋轉(zhuǎn)把這三邊集中到一個三角形內(nèi).

解:如圖2,作∠PAD60°使ADAP,連接PD,CD,則△PAD是等邊三角形.

   ADAP3,∠ADP=∠PAD60°

∵△ABC是等邊三角形

ACAB,∠BAC60°∴∠BAP   

∴△ABP≌△ACD

BPCD4,   =∠ADC

∵在△PCD中,PD3,PC5,CD4,PD2+CD2PC2

∴∠PDC   °

∴∠APB=∠ADC=∠ADP+PDC60°+90°=150°

2)如圖3,在△ABC中,ABBC,∠ABC90°,點P是△ABC內(nèi)一點,PA1PB2,PC3,求∠APB的度數(shù).

3)拓展應(yīng)用.如圖4,△ABC中,∠ABC30°,AB4,BC5,P是△ABC內(nèi)部的任意一點,連接PA,PB,PC,則PA+PB+PC的最小值為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線與拋物線交于AB兩點,點Ax軸上,點B的橫坐標為-8.

1)求該拋物線的解析式;

2)點P是直線AB上方的拋物線上一動點(不與點A、B重合),過點Px軸的垂線,垂足為C,交直線AB于點D,作PEAB于點E.

①設(shè)PDE的周長為l,點P的橫坐標為x,求l關(guān)于x的函數(shù)關(guān)系式,并求出l的最大值;

②連接PA,以PA為邊作圖示一側(cè)的正方形APFG.隨著點P的運動,正方形的大小、位置也隨之改變.當頂點FG恰好落在y軸上時,直接寫出對應(yīng)的點P的坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,點 A 和點 C 分別在x 軸和 y 軸的正半軸上,OA=6,OC=4,以 OA,OC 為鄰邊作矩形 OABC 動點 M,N 以每秒 1 個單位長度的速度分別從點 AC 同時出發(fā),其中點 M 沿 AO 向終點 O 運動,點 N沿 CB 向終點 B 運動,當兩個動點運動了 t 秒時,過點 N NPBC,交 OB 于點 P,連接 MP

1)直接寫出點 B 的坐標為 ,直線 OB 的函數(shù)表達式為 ;

2)記△OMP 的面積為 S,求 S t 的函數(shù)關(guān)系式;并求 t 為何值時,S有最大值,并求出最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】RtABC中,∠ACB90°,點D、E分別是AB、BC的中點,過點CCFAB,與DE的延長線并交于點F,連接BF

1)試判斷四邊形CDBF的形狀,并說明理由;

2)若CD5,sinCAB,過點CCHBF,垂足為H點,試求CH的長.

查看答案和解析>>

同步練習(xí)冊答案