【題目】如圖,△ABC是一塊等邊三角形的廢鐵片,其中AB=AC=10,BC=12.利用其剪裁一個正方形DEFG,使正方形的一條邊DE落在BC上,頂點F G分別落在AC、AB上.

1)小聰想:要畫出正方形DEFG,只要能計算出正方形的邊長就能求出BDCE的長,從而確定D點和E點,再畫正方形DEFG就容易了.請你幫小聰求出正方形的邊長.

2)小明想:不求正方形的邊長也能畫出正方形.具體作法是:

①在AB邊上任取一點G′,如圖2作正方形G′D′E′F′

②連接BF′并延長交AC于點F;

③過點FFEF′E′BC于點E,FGF′G′AB于點G,GDG′D′BC于點D,則四邊形DEFG即為所求的正方形.你認(rèn)為小明的作法正確嗎?說明理由.

【答案】1;(2)正確,理由見解析

【解析】

1)設(shè)正方形的邊長為,作的高,可以求出的長,然后根據(jù)利用其對應(yīng)邊成比例可以列出關(guān)于的方程,然后求出,也就求出了正方形邊長;

2)首先作一個正方形,然后利用位似圖形作圖就可以得到正方形,利用作法中的平行線可以得到比例線段,再根據(jù)比例線段就可以證明所作的圖形是正方形了.

解:(1)設(shè)正方形的邊長為,作的高,

等腰三角形,,,

,

,

解之得:,

正方形的邊長為;

2)正確,

由已知可知,四邊形為矩形,

,

,

同理

,

矩形為正方形.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC的周長為19,點D,E在邊BC上,∠ABC的平分線垂直于AE,垂足為N,ACB的平分線垂直于AD,垂足為M,若BC=7,則MN的長度為( 。

A. B. 2 C. D. 3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形紙片ABCD中,AB4cmAD8cm,按如圖方式折疊,使點D與點B重合,折痕為EF,則tanBEF=(  )

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,BC=4,將矩形ABCD繞點C按順時針方向旋轉(zhuǎn)α角,得到矩形A'B'C'D',B'C與AD交于點E,AD的延長線與A'D'交于點F.

(1)如圖,當(dāng)α=60°時,連接DD',求DD'和A'F的長;

(2)如圖,當(dāng)矩形A'B'CD'的頂點A'落在CD的延長線上時,求EF的長;

(3)如圖,當(dāng)AE=EF時,連接AC,CF,求ACCF的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB3cm,AD4cmEF經(jīng)過對角線BD的中點O,分別交AD,BC于點E,F

1)求證:△BOF≌△DOE

2)當(dāng)EFBD時,求AE的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,△ABC的三個頂點坐標(biāo)分別為A1,﹣4)、B3,﹣3)、C1,﹣1)(每個小方格都是邊長為一個單位長度的正方形).

1)請畫出△ABC關(guān)于原點對稱的△A1B1C1,并寫出A1,B1,C1的坐標(biāo);

2)請畫出△ABC繞點B逆時針旋轉(zhuǎn)90°后的△A2B2C2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知△ABC中,∠C=90°,AC=BC=,將△ABC繞點A順時針旋轉(zhuǎn)60°到△的位置,連接,則的長為(

A.2B.C.D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的正方形網(wǎng)格中建立平面直角坐標(biāo)系,已知△ABC三個頂點分別為A(﹣1,2)、B2,1)、C4,5).

1)以原點O為位似中心,在x軸的上方畫出△A1B1C1,使△A1B1C1與△ABC位似,且相似比為2;

2)△A1B1C1的面積是   平方單位.

3)點Pab)為△ABC內(nèi)一點,則在△A1B1C1內(nèi)的對應(yīng)點P的坐標(biāo)為   

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖(1),在中,,點分別是邊的中點,連接

1)如圖①,求的值;

2)將繞點順時針旋轉(zhuǎn)到如圖(2)的位置時,的大小是否發(fā)生變化,若不變化,請說明理由;若發(fā)生變化,請求出它的值;

3)將繞點順時針旋轉(zhuǎn)到直線的下方,且在同一直線上時,如圖(3),求線段的長.

查看答案和解析>>

同步練習(xí)冊答案