【題目】如圖,在菱形ABCD中,AB2,∠BAC30°,將菱形ABCD繞點A逆時針旋轉(zhuǎn)120°,點B的對應(yīng)點為點B,點C的對應(yīng)點為點C,點D的對應(yīng)點為點D,則圖中陰影部分的面積為_____

【答案】.

【解析】

根據(jù)扇形面積公式與菱形面積公式進(jìn)行計算便可.由S陰影=S扇形CAC′-S扇形DAD′可得答案.

連接BD,與AC相交于點O,如圖,

BD2BO2ABsinBAC2,AC20A2ABcosBAC2

S扇形S扇形CAC′+SABC+SAC′D′S菱形ABCDS扇形DAD′

S扇形CAC′S菱形ABCDS菱形ABCDS扇形DAD′

S扇形CAC′S扇形DAD′

故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,在RtABC中,∠A=90°,AB=AC,點D,E分別在邊ABAC上,AD=AE,連接DC,點M,P,N分別為DE,DC,BC的中點.

(1)觀察猜想

1中,線段PMPN的數(shù)量關(guān)系是 ,位置關(guān)系是 ;

(2)探究證明

ADE繞點A逆時針方向旋轉(zhuǎn)到圖2的位置,連接MN,BD,CE,判斷PMN的形狀,并說明理由;

(3)拓展延伸

ADE繞點A在平面內(nèi)自由旋轉(zhuǎn),若AD=4,AB=10,請直接寫出PMN面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點A在雙曲線y 上,點B在雙曲線yk0)上,ABx軸,交y軸于點C,若AB2AC,則k的值為( 。

A.6B.8C.10D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線yx2+bx+cx軸相交于點A10)和點B,與y軸交于點C0,﹣3)頂點為D

1)求拋物線的函數(shù)關(guān)系式;

2)判斷△BCD的形狀,并說明理由;

3)點P在拋物線上,點Q在直線yx上,是否存在點PQ使以點P、Q、C、O為頂點的四邊形是平行四邊形?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】五一期間,育華中學(xué)組織學(xué)生參加“交通安全知識”網(wǎng)絡(luò)測試活動該校教務(wù)處對九年級全體學(xué)生的測試成績進(jìn)行了統(tǒng)計,將成績分為四個等級:優(yōu)秀、良好、一般、不合格,并繪制成如下不完整的統(tǒng)計圖.請你根據(jù)圖中所給的信息解答下列問題:

1)該校九年級共有名學(xué)生,并把圖1中的條形統(tǒng)計圖補(bǔ)充完整.

2)已知該市共有12000名九年級學(xué)生參加了這次“交通安全知識”網(wǎng)絡(luò)測試,請你根據(jù)該校九年級成績估計該市九年級學(xué)生在這次測試中成績?yōu)閮?yōu)秀的人數(shù).

3)教務(wù)處從該校九年級成績前5名(23女)的學(xué)生中隨機(jī)抽取2名參加復(fù)賽,請用畫樹狀圖或列表法求出抽到“一男一女”的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某漁船向正東方向航行,上午8點在A處時發(fā)現(xiàn)漁船、小島B和小島C在同一條直線上,漁船以30海里/小時的速度繼續(xù)向正東方向航行,上午10點到達(dá)位于小島C的正南方向上的D處,此時小島B在漁船的西偏北63°的方向上,如圖,已知小島C在小島B的東偏北45°的方向上,求小島B和小島C之間的距離.(結(jié)果精確到1海里,參考數(shù)據(jù):sin63°≈0.9,cos63°≈0.5,tan63°≈2.0≈1.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(5分)(2015鞍山期末)小王某月手機(jī)話費(fèi)中的各項費(fèi)用統(tǒng)計情況見下列圖表,請你根據(jù)圖表信息完成下列各題:

項目

月功能費(fèi)

基本話費(fèi)

長途話費(fèi)

短信費(fèi)

金額/

5

50



1)請將表格補(bǔ)充完整;

2)請將條形統(tǒng)計圖補(bǔ)充完整;

3)扇形統(tǒng)計圖中,表示短信費(fèi)的扇形的圓心角是多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,弦CDAB于點E,點PAB延長線上一點,連接PCDB的延長線于點F,且∠PFB3CAB

1)求證:PC是⊙O的切線;

2)延長ACDF相交于點G,連接PG,請?zhí)骄俊?/span>CPG和∠CAB的數(shù)量關(guān)系,并說明理由;

3)若tanCABCF5,求⊙O的半徑.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠ACB=90°,AC=BC=4,點DBC邊的中點,將ABC繞點D逆時針旋轉(zhuǎn)45度,得到A′B′C′B′C′AB交于點E,則圖中陰影部分四邊形ACDE的面積為________.

查看答案和解析>>

同步練習(xí)冊答案