【題目】端午節(jié)是中國的傳統(tǒng)節(jié)日.今年端午節(jié)前夕,遂寧市某食品廠抽樣調(diào)查了河?xùn)|某居民區(qū)市民對A、B、C、D四種不同口味粽子樣品的喜愛情況,并將調(diào)查情況繪制成如圖兩幅不完整統(tǒng)計圖:
(1)本次參加抽樣調(diào)查的居民有 人.
(2)喜歡C種口味粽子的人數(shù)所占圓心角為 度.根據(jù)題中信息補全條形統(tǒng)計圖.
(3)若該居民小區(qū)有6000人,請你估計愛吃D種粽子的有 人.
(4)若有外型完全相同的A、B、C、D棕子各一個,煮熟后,小李吃了兩個,請用列表或畫樹狀圖的方法求他第二個吃的粽子恰好是A種粽子的概率.
【答案】(1)600;(2)72,圖見解析;(3)2400人;(4畫圖見解析,
【解析】
(1)用喜歡D種口味粽子的人數(shù)除以它所占的百分比得到調(diào)查的總?cè)藬?shù);
(2)先計算出喜歡B種口味粽子的人數(shù),再計算出喜歡C種口味粽子的人數(shù),則用360度乘以喜歡C種口味粽子的人數(shù)所占的百分比得到它在扇形統(tǒng)計圖中所占圓心角的度數(shù),然后補全條形統(tǒng)計圖;
(3)用D占的百分比乘以6000即可得到結(jié)果;
(4)畫樹狀圖展示所有12種等可能的結(jié)果數(shù),找出他第二個吃的粽子恰好是A種粽子的結(jié)果數(shù),然后根據(jù)概率公式求解.
解:(1)240÷40%=600(人),
所以本次參加抽樣調(diào)查的居民有600人;
故答案為:600;
(2)喜歡B種口味粽子的人數(shù)為600×10%=60(人),
喜歡C種口味粽子的人數(shù)為600﹣180﹣60﹣240=120(人),
所以喜歡C種口味粽子的人數(shù)所占圓心角的度數(shù)為360°×=72°;
補全條形統(tǒng)計圖為:
故答案為:72;
(3)6000×40%=2400,
所以估計愛吃D種粽子的有2400人;
故答案為2400;
(4)畫樹狀圖為:
共有12種等可能的結(jié)果數(shù),其中他第二個吃的粽子恰好是A種粽子的結(jié)果數(shù)為3,
所以他第二個吃的粽子恰好是A種粽子的概率==.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,若二次函數(shù)y=ax2+bx+c(a≠0)圖象的對稱軸為x=1,與y軸交于點C,與x軸交于點A、點B(﹣1,0),則①二次函數(shù)的最大值為a+b+c;②a﹣b+c<0;③b2﹣4ac<0;④當(dāng)y>0時,﹣1<x<3,其中結(jié)論正確的有( )
A.①③B.①④C.①②D.①③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(問題背景)在面積都相等的所有矩形中,當(dāng)其中一個矩形的一邊長為時,它的另一邊長為.求周長的取值范圍.
(建立模型)
(1)設(shè)矩形相鄰兩邊的長分別為,,由題意可得,則,由周長為,得,即,滿足要求的的取值,從“圖形”角度考慮,應(yīng)是函數(shù)與 的圖象在第一象限內(nèi)有公共點時的取值范圍;從“代數(shù)”角度考慮,應(yīng)看作方程 有正數(shù)解時的取值范圍.
(畫圖觀察)
(2)函數(shù)的圖象如圖所示,而函數(shù)的圖象是一條與軸平行的直線.當(dāng)直線與函數(shù)的圖象有唯一公共點( , )時,周長取得最小值為 .
(代數(shù)說理)
(3)圓圓說矩形的周長可以為,方方說矩形的周長可以為,你認(rèn)為圓圓和方方的說法對嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c與x軸交于A、B兩點,交y軸于點C,AB=4,對稱軸是直線x=﹣1.
(1)求拋物線的解析式及點C的坐標(biāo);
(2)連接AC,E是線段OC上一點,點E關(guān)于直線x=﹣1的對稱點F正好落在AC上,求點F的坐標(biāo);
(3)動點M從點O出發(fā),以每秒2個單位長度的速度向點A運動,到達(dá)點A即停止運動,過點M作x軸的垂線交拋物線于點N,交線段AC于點Q.設(shè)運動時間為t(t>0)秒.
①連接BC,若△BOC與△AMN相似,請直接寫出t的值;
②△AOQ能否為等腰三角形?若能,求出t的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,點E是邊BC的中點,連接AE、DE,分別交BD、AC于點P、Q,過點P作PF⊥AE交CB的延長線于F,下列結(jié)論:
①∠AED+∠EAC+∠EDB=90°,
②AP=FP,
③AE=AO,
④若四邊形OPEQ的面積為4,則該正方形ABCD的面積為36,
⑤CEEF=EQDE.
其中正確的結(jié)論有( 。
A.5個B.4個C.3個D.2個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】下面是用黑色棋子擺成的美麗圖案,按照這樣的規(guī)律擺下去,第10個這樣的圖案需要黑色棋子的個數(shù)為( )
A.148B.152C.174D.202
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,等邊的邊長為3,點在邊上,,線段在邊上運動,,有下列結(jié)論:
①與可能相等;②與可能相似;③四邊形面積的最大值為;④四邊形周長的最小值為.其中,正確結(jié)論的序號為( )
A.①④B.②④C.①③D.②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,半徑為2的與軸的正半軸交于點,點是上一動點,點為弦的中點,直線與軸、軸分別交于點、,則面積的最小值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,以AB為直徑的⊙O外接于△ABC,過A點的切線AP與BC的延長線交于點P,∠APB的平分線分別交AB,AC于點D,E,其中AE,BD(AE<BD)的長是一元二次方程x2﹣5x+6=0的兩個實數(shù)根.
(1)求證:PABD=PBAE;
(2)在線段BC上是否存在一點M,使得四邊形ADME是菱形?若存在,請給予證明,并求其面積;若不存在,說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com