【題目】已知二次函數(shù)y=m (x﹣1)( x﹣4)的圖象與x軸交于A,B兩點(點A在點B的左邊),頂點為C,將該二次函數(shù)的圖象關于x軸翻折,所得圖象的頂點為D.若四邊形ACBD為正方形,則m的值為

【答案】±
【解析】解:∵二次函數(shù)y=m (x﹣1)( x﹣4)的圖象與x軸交于A、B兩點,

∴A(1,0),B(4,0),

∴拋物線的對稱軸為直線x= = ,

設頂點C的坐標為( ,a),

∵四邊形ACBD為正方形,

∴|a|= ,

∴C( , )或C( ,﹣ ),

把C點的坐標代入得, =m( ﹣1)( ﹣4)或﹣ =m( ﹣1)( ﹣4),

解得:m=

所以答案是:±

【考點精析】掌握二次函數(shù)圖象的平移和拋物線與坐標軸的交點是解答本題的根本,需要知道平移步驟:(1)配方 y=a(x-h)2+k,確定頂點(h,k)(2)對x軸左加右減;對y軸上加下減;一元二次方程的解是其對應的二次函數(shù)的圖像與x軸的交點坐標.因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當b2-4ac>0時,圖像與x軸有兩個交點;當b2-4ac=0時,圖像與x軸有一個交點;當b2-4ac<0時,圖像與x軸沒有交點.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在Rt△ABC,∠C=90°,D為AB邊上一點,點M、N分別在BC、AC邊上,且DM⊥DN.作MF⊥AB于點F,NE⊥AB于點E.

(1)特殊驗證:如圖1,若AC=BC,且D為AB中點,求證:DM=DN,AE=DF;
(2)拓展探究:若AC≠BC.
①如圖2,若D為AB中點,(1)中的兩個結論有一個仍成立,請指出并加以證明;
②如圖3,若BD=kAD,條件中“點M在BC邊上”改為“點M在線段CB的延長線上”,其它條件不變,請?zhí)骄緼E與DF的數(shù)量關系并加以證明.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示是一塊含30°,60°,90°的直角三角板,直角頂點O位于坐標原點,斜邊AB垂直于x軸,頂點A在函數(shù)y1= (x>0)的圖象上,頂點B在函數(shù)y2= (x>0)的圖象上,∠ABO=30°,則 =

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,三角形紙片ABC中,∠A=65°,∠B=75°,將∠C沿DE對折,使點C落在ΔABC外的點處,若∠1=20°,則∠2的度數(shù)為( )

A. 80°B. 90°

C. 100°D. 110°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知ABCD,BE平分∠ABC,DE平分∠ADC,∠BAD70°,∠BCD40°,則∠BED的度數(shù)為______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】珍重生命,注意安全!同學們在上下學途中一定要注意騎車安全.小明騎單車上學,當他騎了一段時,想起要買某本書,于是又折回到剛經(jīng)過的新華書店,買到書后繼續(xù)去學校,以下是他本次所用的時間與路程的關系示意圖.根據(jù)圖中提供的信息回答下列問題:

1)小明家到學校的路程是多少米?

2)小明在書店停留了多少分鐘?

3)本次上學途中,小明一共行駛了多少米?一共用了多少分鐘?

4)我們認為騎單車的速度超過300/分鐘就超越了安全限度.問:在整個上學的途中哪個時間段小明騎車速度最快,速度在安全限度內(nèi)嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知A4,a),B(﹣2,﹣4)是一次函數(shù)ykx+b的圖象和反比例函數(shù)y的圖象的交點.

1)求反比例函數(shù)和一次函數(shù)的解析式;

2)求△AOB的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:的高,且.

1)如圖1,求證:

2)如圖2,點EAD上,連接,將沿折疊得到,相交于點,若BE=BC,求的大;

3)如圖3,在(2)的條件下,連接,過點,交的延長線于點,若,求線段的長.

1. 2. 3.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,A11),B(﹣1,1),C(﹣1,﹣2),D1,﹣2).動點P從點A處出發(fā),并按ABCDAB…的規(guī)律在四邊形ABCD的邊上以每秒1個單位長的速度運動,運動時間為t秒.若t2018秒,則點P所在位置的點的坐標是_____

查看答案和解析>>

同步練習冊答案