已知正方形ABCD的邊長(zhǎng)為2,點(diǎn)E、F均在直線BD上,且∠EAF=135°,EB:DF=1:2.
(1)求CF;
(2)在直線BD上是否存在點(diǎn)P,使A、E、P三點(diǎn)圍成的三角形是直角三角形?若存在求出EP的長(zhǎng),不存在請(qǐng)說明理由.
精英家教網(wǎng)
分析:(1)根據(jù)正方形的性質(zhì),得到對(duì)應(yīng)邊相等且對(duì)角線平分正方形的內(nèi)角,進(jìn)而由“SAS”得到△ADF≌△CDF,得到AF=CF,然后根據(jù)等量代換得到∠DAF=∠AEB,由等角的補(bǔ)角相等得到∠ABE=∠ADF=135°,進(jìn)而得到△AEB∽△FAD,得到一個(gè)比例式,設(shè)EB=x,則DF=2x,且正方形邊長(zhǎng)為2,代入比例式中求出x的值,確定出DF的長(zhǎng),連接AC,由正方形的性質(zhì)可知AC⊥BD,O為BD中點(diǎn),求出OA以及OF的長(zhǎng),利用勾股定理即可求出AF的長(zhǎng),即CF的長(zhǎng);
(2)存在.有兩解:第一,當(dāng)P與O重合時(shí),EO即為EP的長(zhǎng),根據(jù)(1)求出的EB和OB的長(zhǎng)求出EP即可;第二,當(dāng)AP⊥AE,與BD交于點(diǎn)P,此時(shí)△AEP為直角三角形,根據(jù)題意畫出圖形,由兩對(duì)角相等的兩三角形相似得到△AEO∽△PEA,由相似三角形對(duì)應(yīng)邊成比例列出比例式,由AE和EO的長(zhǎng)即可求出PE.
解答:解:(1)∵正方形ABCD,
∴AD=DC,∠ADB=∠CDB=45°,即∠ADF=∠CDF=135°,
在△ADF和△CDF中,
AD=CD
∠ADF=∠CDF
DF=DF

∴△ADF≌△CDF(SAS),
∴AF=CF,
又∠EAF=∠EAB+∠BAD+∠DAF=135°,且∠BAD=90°,
∴∠EAB+∠DAF=45°,而∠ABD=∠EAB+∠AEB=45°,
∴∠DAF=∠AEB,∠ABE=∠ADF=135°,
∴△AEB∽△FAD,
設(shè)EB=x,則DF=2x,AB=AD=2,
x
2
=
2
2x
,解得x=
2
,則DF=2
2
,
連接AC交BD與O,由正方形ABCD,得到AC⊥BD,O為BD中點(diǎn),
∴OD=OA=
2
,則OF=OD+DF=3
2
,
在直角三角形OAF中,根據(jù)勾股定理得:
AF2=AO2+OF2=2+18=20,解得AF=2
5
,則CF=2
5
;

(2)存在.
當(dāng)P與(1)中的正方形中心O重合時(shí),△AEP為直角三角形,
由(1)得到OB=BE=
2
,∴EP=2
2
;
過A作AP⊥AE,與BD交于點(diǎn)P,此時(shí)△AEP為直角三角形,
根據(jù)題意畫出圖形,如圖所示:
精英家教網(wǎng)
由題意可知:∠PAE=∠AOE=90°,∠AOE=∠PEA,
∴△AEO∽△PEA,∴AE2=EO•EP,
AE=
EO2+AO2
=
10
,EO=2
2
,
則EP=
10
2
2
=
5
2
2

EP的長(zhǎng)為2
2
5
2
2
點(diǎn)評(píng):此題綜合考查了正方形的性質(zhì),相似三角形的判定與性質(zhì)以及勾股定理.學(xué)生在作第二問時(shí)注意結(jié)合圖形,由相似得比例,進(jìn)而找出已知與未知的關(guān)系,鍛煉了學(xué)生分析問題,解決問題的能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知正方形ABCD的邊長(zhǎng)為12cm,E為CD邊上一點(diǎn),DE=5cm.以點(diǎn)A為中心,將△ADE按順時(shí)針方向旋轉(zhuǎn)得△ABF,則點(diǎn)E所經(jīng)過的路徑長(zhǎng)為
 
cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知正方形ABCD的邊長(zhǎng)為6,以D為圓心,DA為半徑在正方形內(nèi)作弧AC,E是AB邊上動(dòng)點(diǎn)(與點(diǎn)A、B不重精英家教網(wǎng)合),過點(diǎn)E作弧AC的切線,交BC于點(diǎn)F,G為切點(diǎn),⊙O是△EBF的內(nèi)切圓,分別切EB、BF、FE于點(diǎn)P、J、H
(1)求證:△ADE∽△PEO;
(2)設(shè)AE=x,⊙O的半徑為y,求y關(guān)于x的解析式,并寫出定義域;
(3)當(dāng)⊙O的半徑為1時(shí),求CF的長(zhǎng);
(4)當(dāng)點(diǎn)E在移動(dòng)時(shí),圖中哪些線段與線段EP始終保持相等,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2011•同安區(qū)質(zhì)檢)如圖,已知正方形ABCD的邊長(zhǎng)是2,E是AB的中點(diǎn),延長(zhǎng)BC到點(diǎn)F使CF=AE.
(1)求證:△ADE≌△CDF;
(2)現(xiàn)把△DCF向左平移,使DC與AB重合,得△ABH,AH交ED于點(diǎn)G.求AG的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•香洲區(qū)一模)如圖,已知正方形ABCD的邊長(zhǎng)為28,動(dòng)點(diǎn)P從A開始在線段AD上以每秒3個(gè)單位長(zhǎng)度的速度向點(diǎn)D運(yùn)動(dòng)(點(diǎn)P到達(dá)點(diǎn)D時(shí)終止運(yùn)動(dòng)),動(dòng)直線EF從AD開始以每秒1個(gè)單位長(zhǎng)度的速度向下平行移動(dòng)(即EF∥AD),并且分別與DC、AC交于E、F兩點(diǎn),連接FP,設(shè)動(dòng)點(diǎn)P與動(dòng)直線EF同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t 秒.
(1)t為何值時(shí),梯形DPFE的面積最大?最大面積是多少?
(2)當(dāng)梯形DPFE的面積等于△APF的面積時(shí),求線段PF的長(zhǎng).
(3)△DPF能否為一個(gè)等腰三角形?若能,試求出所有的t的值;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知正方形ABCD的邊長(zhǎng)為8cm,點(diǎn)E、F分別在邊BC、CD上,∠EAF=45°.當(dāng)EF=8cm時(shí),△AEF的面積是
32
32
cm2;當(dāng)EF=7cm時(shí),△EFC的面積是
8
8
cm2

查看答案和解析>>

同步練習(xí)冊(cè)答案