如圖,已知正方形ABCD的邊長為8cm,點E、F分別在邊BC、CD上,∠EAF=45°.當EF=8cm時,△AEF的面積是
32
32
cm2;當EF=7cm時,△EFC的面積是
8
8
cm2
分析:把△ADF順時針旋轉90°得到△ABG,根據旋轉的性質可得AF=AG,再求出∠EAG=∠EAF,然后利用“邊角邊”證明△AEF和△AEG全等,根據全等三角形對應邊相等可得EG=EF,然后求出△AEG的面積,再根據全等三角形的面積相等解答;
設CE=x,先表示出BE,再表示出GB,即DF,然后表示出FC,在Rt△CEF中,利用勾股定理列式整理表示出CE•FC,再根據三角形的面積解答即可.
解答:解:如圖,把△ADF順時針旋轉90°得到△ABG,
則AF=AG,
∵∠EAF=45°,
∴∠EAG=90°-∠EAF=90°-45°=45°,
∴∠EAG=∠EAF,
∵在△AEF和△AEG中,
AF=AG
∠EAG=∠EAF
AE=AE
,
∴△AEF≌△AEG(SAS),
∴EG=EF,
∵EF=8cm,AB=8cm,
∴S△AEG=
1
2
×8×8=32cm2,
∴△AEF的面積是32cm2;
設CE=x,則BE=BC-CE=8-x,
∵EF=7cm,
∴DF=BG=EG-BE=7-(8-x)=x-1,
∴FC=CD-DF=8-(x-1)=9-x,
在Rt△CEF中,CE2+FC2=EF2
即x2+(9-x)2=72,
整理得,x2-9x+16=0,
所以,x(9-x)=16,
△EFC的面積=
1
2
CE•FC=
1
2
x(9-x)=
1
2
×16=8cm2
故答案為:32,8.
點評:本題考查了正方形的性質,全等三角形的判定與性質,勾股定理的應用,旋轉的性質,作出旋轉圖形構造出全等三角形是解題的關鍵,第二問的求解比較巧妙,把一元二次方程整理出CE•FC的形式是關鍵,不需要求出CE的長度.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網如圖,已知正方形ABCD的邊AB與正方形AEFM的邊AM在同一直線上,直線BE與DM交于點N.求證:BN⊥DM.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2013•北碚區(qū)模擬)如圖,已知正方形ABCD,點E是BC上一點,點F是CD延長線上一點,連接EF,若BE=DF,點P是EF的中點.
(1)求證:DP平分∠ADC;
(2)若∠AEB=75°,AB=2,求△DFP的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知正方形ABCD,點E在BC邊上,將△DCE繞某點G旋轉得到△CBF,點F恰好在AB邊上.
(1)請畫出旋轉中心G (保留畫圖痕跡),并連接GF,GE;
(2)若正方形的邊長為2a,當CE=
a
a
時,S△FGE=S△FBE;當CE=
2a+
2
a
2
或EC=
2a-
2
a
2
2a+
2
a
2
或EC=
2a-
2
a
2
 時,S△FGE=3S△FBE

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知正方形ABCD的對角線交于O,過O點作OE⊥OF,分別交AB、BC于E、F,若AE=4,CF=3,則EF的值是(  )

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,已知正方形ABCD的對角線AC,BD相交于點O,E是AC上的一點,過點A作AG⊥BE,垂足為G,AG交BD于點F.
(1)試說明OE=OF;
(2)當AE=AB時,過點E作EH⊥BE交AD邊于H.若該正方形的邊長為1,求AH的長.

查看答案和解析>>

同步練習冊答案