【題目】對(duì),定義一種新的運(yùn)算,規(guī)定:(其中).已知,

1)求,的值;

2)若關(guān)于正數(shù)的不等式組恰好有2個(gè)整數(shù)解,求的取值范圍;

3)請(qǐng)直接寫(xiě)出時(shí),滿(mǎn)足條件的,的關(guān)系.

【答案】(1),;(2;(3

【解析】

1)根據(jù)題中的新定義列出方程組,求出方程組的解即可;

2)由①中的不等式,將新定義的運(yùn)算化為普通不等式組求解,再根據(jù)恰好有2個(gè)整數(shù)解,求出m的取值范圍;

3)分x2≥y2y2≥x2按照新定義的運(yùn)算化為普通方程求解即可.

解:(1,

,

解得:;

2

,,

,

有兩個(gè)整數(shù)解,

;

3)∵Ax2,y2+Ay2,x2=0,
∴當(dāng)x2≥y2時(shí),x2-y2+x2-y2=0,
x2=y2,
x=yx=-y
當(dāng)y2≥x2時(shí),y2-x2+y2-x2=0,
x=yx=-y
答:滿(mǎn)足條件的xy的關(guān)系為x=yx=-y

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在等邊△ABC外作射線AD,使得ADAC在直線AB的兩側(cè),∠BAD=α(0°<α<180°),點(diǎn)B關(guān)于直線AD的對(duì)稱(chēng)點(diǎn)為P,連接PB,PC.

(1)依題意補(bǔ)全圖1;

(2)在圖1中,求△BPC的度數(shù);

(3)直接寫(xiě)出使得△PBC是等腰三角形的α的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知反比例函數(shù)y=與一次函數(shù)y=x+b的圖象在第一象限相交于點(diǎn)A1,-k+4).

1)試確定這兩個(gè)函數(shù)的表達(dá)式;

2)求出這兩個(gè)函數(shù)圖象的另一個(gè)交點(diǎn)B的坐標(biāo),并求△A0B的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖所示的平面直角坐標(biāo)系中,

(1)畫(huà)出函數(shù)的圖象;

(2)填空:請(qǐng)寫(xiě)出圖象與x軸的交點(diǎn)A(___,___)的坐標(biāo),與y軸交點(diǎn)B(___,__)的坐標(biāo);

(3)(2)的條件下,求出△AOB的面積;

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)為豐富學(xué)生的校園生活,準(zhǔn)備購(gòu)買(mǎi)若干個(gè)足球和籃球.如果購(gòu)買(mǎi)3個(gè)足球和2個(gè)籃球,那么共需480元;如果購(gòu)買(mǎi)1個(gè)足球和3個(gè)籃球,那么共需440元.學(xué)校購(gòu)買(mǎi)足球和籃球的費(fèi)用一共是3920元.

1)求購(gòu)買(mǎi)一個(gè)足球、一個(gè)籃球各需多少元?

2)將籃球分給七年級(jí),若每個(gè)班分3個(gè)籃球,則多余8個(gè)籃球;若前面的每班分5個(gè)籃球,則最后一個(gè)班分不到5個(gè).該校七年級(jí)共有多少個(gè)班?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,點(diǎn)在第二象限,其中滿(mǎn)足等式,點(diǎn)在第一象限內(nèi),射線,與軸交于點(diǎn)

1)當(dāng)時(shí),求點(diǎn)的坐標(biāo);

2)點(diǎn)軸上從出發(fā)以每秒1個(gè)單位長(zhǎng)度的速度向點(diǎn)運(yùn)動(dòng)(到達(dá)點(diǎn)后停止運(yùn)動(dòng)),求當(dāng)時(shí)間為秒時(shí)(不考慮點(diǎn)與點(diǎn)重合的情況),,的大小關(guān)系;

3)如圖,若,點(diǎn)是射線上一動(dòng)點(diǎn),,的平分線交于點(diǎn)的大小是否隨點(diǎn)的位置變化發(fā)生改變,若不變,請(qǐng)求出的度數(shù);若改變,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線y=x2+bx﹣2與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且A(﹣1,0).

(1)求拋物線的解析式及頂點(diǎn)D的坐標(biāo);

(2)判斷△ABC的形狀,證明你的結(jié)論;

(3)點(diǎn)M是x軸上的一個(gè)動(dòng)點(diǎn),當(dāng)△DCM的周長(zhǎng)最小時(shí),求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,△ABC中,∠C=90°AC=BC,AD平分∠CABBC于點(diǎn)DDE⊥AB,垂足為E,且AB=6cm,則△DEB的周長(zhǎng)為( )

A. 4cm B. 6cm C. 8cm D. 10cm

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AC⊙O的直徑,AC=4,B、D分別在AC兩側(cè)的圓上,∠BAD=60°,BDAC的交點(diǎn)為E

1求點(diǎn)OBD的距離及∠OBD的度數(shù);

2DE=2BE,求的值CD的長(zhǎng).

查看答案和解析>>

同步練習(xí)冊(cè)答案