【題目】如圖,已知反比例函數(shù)y=與一次函數(shù)y=x+b的圖象在第一象限相交于點(diǎn)A(1,-k+4).
(1)試確定這兩個函數(shù)的表達(dá)式;
(2)求出這兩個函數(shù)圖象的另一個交點(diǎn)B的坐標(biāo),并求△A0B的面積.
【答案】(1)反比例函數(shù)的解析式為y=,一次函數(shù)的解析式為y=x+1;(2).
【解析】
試題(1)把點(diǎn)A坐標(biāo)代入反比例函數(shù)的解析式中求出k的值,再把A點(diǎn)坐標(biāo)代入一次函數(shù)解析式中求出b的值;
(2)兩個解析式聯(lián)立列出方程組,求得點(diǎn)B坐標(biāo)即可,再求出點(diǎn)C坐標(biāo),把△A0B的面積轉(zhuǎn)化成△A0C的面積+△C0B的面積即可.
試題解析:(1)∵已知反比例函數(shù)與一次函數(shù)的圖象在第一象限相交于點(diǎn)A(1,﹣k+4),∴﹣k+4=k,解得k=2,故反比例函數(shù)的解析式為,又知A(1,2)在一次函數(shù)的圖象上,故2=1+b,解得b=1,故一次函數(shù)的解析式為;
(2)由題意得:,解得x=﹣2或1,∴B(﹣2,﹣1),令y=0,得x+1=0,解得x=﹣1,∴C(﹣1,0),∴S△A0B=S△A0C+S△C0B=×1×2+×1×1=1+=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在四邊形ABCD中,AC,BD為對角線,AB=BC=AC=BD,則∠ADC的大小為( )
A. 120°B. 135°C. 145°D. 150°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,,,以邊的中點(diǎn)為圓心,作半圓與相切,點(diǎn)分別是邊和半圓上的動點(diǎn),連接,則長的最大值與最小值的和是__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,反比例函數(shù)y= (x>0)的圖象經(jīng)過矩形OABC對角線的交點(diǎn)M,分別與AB、BC相交于點(diǎn)D、E.若四邊形ODBE的面積為6,則k的值為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】若直線y=kx(k>0)與雙曲線y=相交于點(diǎn)A(x1,y1)和B(x2,y2),則x1y2+x2y1的值是____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在數(shù)軸上,點(diǎn)A,B分別表示數(shù)a,b,且(a+12)2+|b﹣24|=0,記AB=|a﹣b|.
(1)求AB的值;
(2)如圖,點(diǎn)P,Q分別從點(diǎn)A,B同時出發(fā)沿數(shù)軸向右運(yùn)動,點(diǎn)P的速度是每秒2個單位長度,點(diǎn)Q的速度是每秒4個單位長度,當(dāng)BQ=2BP時,P點(diǎn)對應(yīng)的數(shù)是多少?
(3)在(2)的條件下,點(diǎn)M從原點(diǎn)與P、Q點(diǎn)同時出發(fā)沿數(shù)軸向右運(yùn)動,速度是每秒x個單位長度(2<x<4),若在運(yùn)動過程中,2MP﹣MQ的值與運(yùn)動的時間t無關(guān),求x的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,平行四邊形ABCD的邊AD=2AB,點(diǎn)E、A、B、F在一條直線上,且AE=BF=AB,EC交AD于M,FD交BC于N.
(1) △AEM≌△DCM嗎?說明理由.
(2) 四邊形CDMN是菱形嗎?說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對,定義一種新的運(yùn)算,規(guī)定:(其中).已知,.
(1)求,的值;
(2)若關(guān)于正數(shù)的不等式組恰好有2個整數(shù)解,求的取值范圍;
(3)請直接寫出時,滿足條件的,的關(guān)系.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知⊙O的直徑AB=12,弦AC=10,D是弧BC的中點(diǎn),過點(diǎn)D作DE⊥AC,交AC的延長線于點(diǎn)E.
(1)求證:DE是⊙O的切線;
(2)求AE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com