19.學(xué)校有甲乙兩個(gè)鼓號(hào)隊(duì),各由5名隊(duì)員組成,且甲乙兩隊(duì)的平均身高分別是160cm,155cm,甲對(duì)隊(duì)員身高的方差是1.2,乙隊(duì)隊(duì)員身高的方差是120,則甲隊(duì)身高較整齊.(填“甲”或“乙”)

分析 根據(jù)方差的性質(zhì)比較解答即可.

解答 解:∵1.2<120,
∴甲隊(duì)隊(duì)員身高的方差是小于乙隊(duì)隊(duì)員身高的方差,
∴甲隊(duì)身高較整齊.
故答案為:甲.

點(diǎn)評(píng) 本題考查的是方差的性質(zhì),掌握方差是反映一組數(shù)據(jù)的波動(dòng)大小的一個(gè)量.方差越大,則平均值的離散程度越大,穩(wěn)定性也越;反之,則它與其平均值的離散程度越小,穩(wěn)定性越好是解題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:選擇題

9.若1-$\frac{4}{x}$+$\frac{4}{{x}^{2}}$=9,則$\frac{2}{x}$的值是( 。
A.4B.-2C.4或-2D.±3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

10.因式分解:
(1)4(a-b)2-16(a+b)2
(2)81a4-b4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:選擇題

7.袋中裝有除顏色外完全相同的a個(gè)白球、b個(gè)紅球、c個(gè)黃球,則任意摸出一個(gè)球是黃球的概率為( 。
A.$\frac{c}{a+b+c}$B.$\frac{c}{a+b}$C.$\frac{a+c}{a+b+c}$D.$\frac{a+b}{c}$

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:填空題

14.不等式組$\left\{\begin{array}{l}x+1<2\\-2x<2\end{array}\right.$的解集為-1<x<1.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

4.列一元一次方程解應(yīng)用問題:
一個(gè)蓄水池裝有甲、乙兩個(gè)進(jìn)水管和丙一個(gè)出水管,單獨(dú)開放甲管3小時(shí)可注滿一池水,單獨(dú)開放乙管6小時(shí)可注滿一池水,單獨(dú)開放丙管4小時(shí)可放盡一池水.
(1)若同時(shí)開放甲、乙、丙三個(gè)水管,幾小時(shí)可注滿水池?
(2)若甲管先開放1小時(shí),而后同時(shí)開放乙、丙兩個(gè)水管,則共需幾小時(shí)可注滿水池?
(3)若甲管先開放1小時(shí)后關(guān)閉,而后同時(shí)開放乙、丙兩個(gè)水管,能注滿水池嗎?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

11.閱讀下列材料,完成相應(yīng)學(xué)習(xí)任務(wù):
                                                        四點(diǎn)共圓的條件
    我們知道,過任意一個(gè)三角形的三個(gè)頂點(diǎn)能作一個(gè)圓,過任意一個(gè)四邊形的四個(gè)頂點(diǎn)能作一個(gè)圓嗎?小明經(jīng)過實(shí)踐探究發(fā)現(xiàn):過對(duì)角互補(bǔ)的四邊形的四個(gè)頂點(diǎn)能作一個(gè)圓,下面是小明運(yùn)用反證法證明上述命題的過程:
已知:在四邊形ABCD中,∠B+∠D=180°.
求證:過點(diǎn)A、B、C、D可作一個(gè)圓.
證明:如圖(1),假設(shè)過點(diǎn)A、B、C、D四點(diǎn)不能作一個(gè)圓,過A、B、C三點(diǎn)作圓,若點(diǎn)D在圓外,設(shè)AD與圓相交于點(diǎn)E,連接CE,則∠B+∠AEC=180°,而已知∠B+∠D=180°,所以∠AEC=∠D,而∠AEC是△CED的外角,∠AEC>∠D,出現(xiàn)矛盾,故假設(shè)不成立,因此點(diǎn)D在過A、B、C三點(diǎn)的圓上.
    如圖(2)假設(shè)過點(diǎn)A、B、C、D四點(diǎn)不能作一個(gè)圓,過A、B、C三點(diǎn)作圓,若點(diǎn)D在圓內(nèi),設(shè)AD的延長(zhǎng)線與圓相交于點(diǎn)E,連接CE,則∠B+∠AEC=180°,而已知∠B+∠ADCA=180°,所以∠AEC=∠ADC,而∠ADC是△CED的外角,∠ADC>∠AEC,出現(xiàn)矛盾,故假設(shè)不成立,因此點(diǎn)D在過A、B、C三點(diǎn)的圓上.
    因此得到四點(diǎn)共圓的條件:過對(duì)角互補(bǔ)的四邊形的四個(gè)頂點(diǎn)能作一個(gè)圓.
學(xué)習(xí)任務(wù):
(1)材料中劃線部分結(jié)論的依據(jù)是圓的內(nèi)接四邊形對(duì)角互補(bǔ).
(2)證明過程中主要體現(xiàn)了下列哪種數(shù)學(xué)思想:D(填字母代號(hào)即可)
            A、函數(shù)思想   B、方程思想   C、數(shù)形結(jié)合思想   D、分類討論思想
(3)如圖(3),在四邊形ABCD中,∠ABC=∠ADC=90°,∠CAD=16°.AD=BD,則求∠ADB的大。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

8.如圖,AB為⊙O的直徑,弦CD⊥AB,點(diǎn)E為垂足,點(diǎn)F為$\widehat{BC}$的中點(diǎn),連接DA,DF,DF交AB于點(diǎn)G.

(1)如圖1,求證:∠AGD=∠ADG;
(2)如圖2,連接AF交CE于點(diǎn)H,連接HG,求證:CH=HG;
(3)如圖3,在(2)的條件下,過點(diǎn)O作OP⊥AD,點(diǎn)P為垂足,若OP=BG,DG=4,求HG長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

9.Rt△ABC中,∠C=90°,點(diǎn)D、E是△ABC邊AC、BC上的點(diǎn),點(diǎn)P是一動(dòng)點(diǎn).令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.

(1)若點(diǎn)P在線段AB上,如圖(1),∠α=50°,則∠1+∠2=140°
(2)若點(diǎn)P在邊AB上運(yùn)動(dòng),如圖(2)所示,則∠α、∠1、∠2之間的關(guān)系為:∠1+∠2=90°+α
(3)若點(diǎn)P運(yùn)動(dòng)到邊AB的延長(zhǎng)線上,如圖(3)所示,則∠α、∠1、∠2之間有何關(guān)系?猜想并說明理由.
(4)若點(diǎn)P運(yùn)動(dòng)到△ABC形外,如圖(4),則∠α、∠1、∠2之間的關(guān)系為:∠2=90°+∠1-α.

查看答案和解析>>

同步練習(xí)冊(cè)答案