【題目】閱讀材料:

小明在學習二次根式的化簡后,遇到了這樣一個需要化簡的式子:.該如何化簡呢?思考后,他發(fā)現(xiàn)3+2=1+2+(2=(1+2.于是==1+.善于思考的小明繼續(xù)深入探索;當a+b=(m+n2時(其中a,b,m,n均為正整數(shù)),則a+b=m2+2mn+2n2.此時,a=m2+2n2,b=2mn,于是,=m+n.請你仿照小明的方法探索并解決下列問題:

(1)設a,b,m,n均為正整數(shù)且=m+n,用含m,n的式子分別表示a,b時,結果是a=   ,b=   ;

(2)利用(1)中的結論,選擇一組正整數(shù)填空:=   +   ;

(3)化簡:

【答案】(1)m2+3n2,2mn;(2)7,4, 2,1;(3)+1 .

【解析】

(1)利用已知直接去括號進而得出a,b的值;

(2)取m=2,n=1,計算ab的值,利用完全平方公式,變形得出答案;

(3)直接利用完全平方公式,變形化簡即可.

1)由題意得:a+b=(m+n2,

a+b=m2+3n2+2mn,

a=m2+3n2,b=2mn,

故答案為:m2+3n2,2mn;

(2)取m=2,n=1,則a=m2+3n2=7,b=2mn=4,

7+4=(2+2;

故答案為:7,4, 2,1;

(3)===+1.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】
(1)先求解下列兩題: ①如圖①,點B,D在射線AM上,點C,E在射線AN上,且AB=BC=CD=DE,已知∠EDM=84°,求∠A的度數(shù);
②如圖②,在直角坐標系中,點A在y軸正半軸上,AC∥x軸,點B,C的橫坐標都是3,且BC=2,點D在AC上,且橫坐標為1,若反比例函數(shù) 的圖象經過點B,D,求k的值.
(2)解題后,你發(fā)現(xiàn)以上兩小題有什么共同點?請簡單地寫出.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一漁船由西往東航行,在A點測得海島C位于北偏東60°的方向,前進20海里到達B點,此時,測得海島C位于北偏東30°的方向,則海島C到航線AB的距離CD等于海里.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某地區(qū)住宅用電之電費計算規(guī)則如下:每月每戶不超過50度時,每度以4元收費;超過50度的部分,每度以5元收費,并規(guī)定用電按整數(shù)度計算(小數(shù)部份無條件舍去).
(1)下表給出了今年3月份A,B兩用戶的部分用電數(shù)據,請將表格數(shù)據補充完整,

電量(度)

電費(元)

A

240

B

合計

90


(2)若假定某月份C用戶比D用戶多繳電費38元,求C用戶該月可能繳的電費為多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形OABC的頂點A,C分別在x軸和y軸上,點B的坐標為(4,6).雙曲線y= (x>0)的圖象經過BC的中點D,且與AB交于點E,連接DE.

(1)求k的值及點E的坐標;
(2)若點F是邊上一點,且△BCF∽△EBD,求直線FB的解析式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知下列命題: ①同位角相等;
②若a>b>0,則
③對角線相等且互相垂直的四邊形是正方形;
④拋物線y=x2﹣2x與坐標軸有3個不同交點;
⑤邊長相等的多邊形內角都相等.
其中正確的命題有(
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,拋物線m:y=ax2+b(a<0,b>0)與x軸于點A、B(點A在點B的左側),與y軸交于點C.將拋物線m繞點B旋轉180°,得到新的拋物線n,它的頂點為C1 , 與x軸的另一個交點為A1

(1)當a=﹣1,b=1時,求拋物線n的解析式;
(2)四邊形AC1A1C是什么特殊四邊形,請寫出結果并說明理由;
(3)若四邊形AC1A1C為矩形,請求出a,b應滿足的關系式.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中有一正方形AOBC,反比例函數(shù) 經過正方形AOBC對角線的交點,半徑為(4﹣2 )的圓內切于△ABC,則k的值為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】
(1)當一次性購物標價總額是300元時,甲、乙超市實付款分別是多少?
(2)當標價總額是多少時,甲、乙超市實付款一樣?
(3)小王兩次到乙超市分別購物付款198元和466元,若他只去一次該超市購買同樣多的商品,可以節(jié)省多少元?

查看答案和解析>>

同步練習冊答案