【題目】某地區(qū)住宅用電之電費計算規(guī)則如下:每月每戶不超過50度時,每度以4元收費;超過50度的部分,每度以5元收費,并規(guī)定用電按整數(shù)度計算(小數(shù)部份無條件舍去).
(1)下表給出了今年3月份A,B兩用戶的部分用電數(shù)據(jù),請將表格數(shù)據(jù)補充完整,

電量(度)

電費(元)

A

240

B

合計

90


(2)若假定某月份C用戶比D用戶多繳電費38元,求C用戶該月可能繳的電費為多少?

【答案】
(1)58;32;128;368
(2)解:設3月份C用戶用電x度,D用戶用電y度.

∵38不能被4和5整除,

∴x>50,y≤50,

∴200+5(x﹣50)﹣4y=38

∴5x﹣4y=88,

,

∴50<x≤57.6.

又∵x是4的倍數(shù),

∴x=52,56 C用戶可能繳的繳電費為210元或230元.


【解析】解:(1)設A用戶用電量為x度,則 4×50+5(x﹣50)=240,
解得x=58;
B用戶的用電量:90﹣58=32(度).
B用戶的電費:32×4=128(元)
A、B用戶的電費:240+128=368(元),
故答案是:

電量(度)

電費(元)

A

58

240

B

32

128

合計

90

368

(1)根據(jù)收費標準和電費=相應段的收費標準×用電量進行計算;(2)設3月份C用戶用電x度,D用戶用電y度.結合(1)中求得的相關數(shù)據(jù)得到:x>50,y≤50,200+5(x﹣50)﹣4y=38,求x、y的整數(shù)解即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】在Rt△ABC中,∠C=90°,AB=2BC,現(xiàn)給出下列結論:①sinA= ;②cosB= ;③tanA= ;④tanB= ,其中正確的結論是(只需填上正確結論的序號)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點O△ABC內(nèi)一點,∠A=80°,BO、CO分別是∠ABC∠ACB的角平分線,則∠BOC等于( 。

A. 140° B. 120° C. 130° D. 無法確定

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,C,D是以線段AB為直徑的⊙O上兩點,若CA=CD,且∠ACD=30°,則∠CAB=(
A.15°
B.20°
C.25°
D.30°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知如圖,AB是半圓O的直徑,弦AD、BC相交于點P,那么 等于∠BPD的(
A.正弦
B.余弦
C.正切
D.以上都不對

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,將正方形ABCD的一角折向邊CD,使點A與CB上一點E重合,若BE=1,CE=2,則折痕FG的長度為(
A.
B.2
C.3
D.4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】閱讀材料:

小明在學習二次根式的化簡后,遇到了這樣一個需要化簡的式子:.該如何化簡呢?思考后,他發(fā)現(xiàn)3+2=1+2+(2=(1+2.于是==1+.善于思考的小明繼續(xù)深入探索;當a+b=(m+n2時(其中a,b,m,n均為正整數(shù)),則a+b=m2+2mn+2n2.此時,a=m2+2n2,b=2mn,于是,=m+n.請你仿照小明的方法探索并解決下列問題:

(1)設a,b,m,n均為正整數(shù)且=m+n,用含m,n的式子分別表示a,b時,結果是a=   ,b=   ;

(2)利用(1)中的結論,選擇一組正整數(shù)填空:=   +   ;

(3)化簡:

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一個不透明的袋子中裝有紅、白兩種顏色的小球,這些球除顏色外都相同,其中紅球有2個,若從中隨機摸出一個球,這個球是白球的概率為
(1)求袋子中白球的個數(shù);(請通過列式或列方程解答)
(2)隨機摸出一個球后,放回并攪勻,再隨機摸出一個球,求兩次都摸到相同顏色的小球的概率.(請結合樹狀圖或列表解答)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABE中,∠A=105°,AE的垂直平分線MNBE于點C,且AB+BC=BE,則∠B的度數(shù)是( 。

A. 45° B. 60° C. 50° D. 55°

查看答案和解析>>

同步練習冊答案