【題目】如圖,直線y=x+b與雙曲線y=(k是常數(shù),k≠0)在第一象限內(nèi)交于點(diǎn)A(1,2),且與x軸、y軸分別交于B,C兩點(diǎn).點(diǎn)P在x軸.
(1)求直線和雙曲線的解析式;
(2)若△BCP的面積等于2,求P點(diǎn)的坐標(biāo);
(3)求PA+PC的最短距離.
【答案】(1)直線的解析式為y=x+1;(2)P點(diǎn)的坐標(biāo)為(3,0)或(﹣5,0);(3)
【解析】試題分析:(1)把A(1,2)代入雙曲線以及直線y=x+b,分別可得k,b的值;
(2)先根據(jù)直線解析式得到BO=CO=1,再根據(jù)△BCP的面積等于2,即可得到P的坐標(biāo).
(3)作C關(guān)于x軸的對(duì)稱(chēng)點(diǎn)C′,此時(shí)PA+PC最短,最短距離可利用勾股定理求得.
試題解析:解:(1)把A(1,2)代入雙曲線y=,可得:k=2,∴雙曲線的解析式為y=;
把A(1,2)代入直線y=x+b,可得:b=1,∴直線的解析式為y=x+1;
(2)設(shè)P點(diǎn)的坐標(biāo)為(x,0),在y=x+1中,令y=0,則x=﹣1;令x=0,則y=1,∴B(﹣1,0),C(0,1),即BO=1=CO.∵△BCP的面積等于2,∴BP×CO=2,即|x﹣(﹣1)|×1=2,解得:x=3或﹣5,∴P點(diǎn)的坐標(biāo)為(3,0)或(﹣5,0).
(3)如圖,作C關(guān)于x軸的對(duì)稱(chēng)點(diǎn)C′,則C(0,﹣1).
此時(shí)PA+PC最短,最短距離是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在矩形ABCD中,E、F分別是邊AB、CD上的點(diǎn),AE=CF,連接EF,BF,EF與對(duì)角線AC交于O點(diǎn),且BE=BF,∠BEF=2∠BAC。
(1)求證:OE=OF;
(2)若BC=,求AB的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)如圖①,OP是∠MON的平分線,點(diǎn)A為OP上一點(diǎn),請(qǐng)你作一個(gè)∠BAC,B、C分別在OM、ON上,且使AO平分∠BAC(保留作圖痕跡);
(2)如圖②,在△ABC中,∠ACB是直角,∠B=60°,△ABC的平分線AD,CE相交于點(diǎn)F,請(qǐng)你判斷FE與FD之間的數(shù)量關(guān)系(可類(lèi)比(1)中的方法);
(3)如圖③,在△ABC中,如果∠ACB≠90°,而(2)中的其他條件不變,請(qǐng)問(wèn)(2)中所得的結(jié)論是否仍然成立?若成立,請(qǐng)證明,若不成立,說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本題滿分8分)一個(gè)不透明的口袋中裝有2個(gè)紅球(記為紅球1、紅球2)、1個(gè)白球、1個(gè)黑球,這些球除顏色外都相同,將球搖勻.
(1)從中任意摸出1個(gè)球,恰好摸到紅球的概率是 ;
(2)先從中任意摸出1個(gè)球,再?gòu)挠嘞碌?個(gè)球中任意摸出1個(gè)球,請(qǐng)用列舉法(畫(huà)樹(shù)狀圖或列表)求兩次都摸到紅球的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】興趣小組的同學(xué)要測(cè)量樹(shù)的高度.在陽(yáng)光下,一名同學(xué)測(cè)得一根長(zhǎng)為米的竹竿的影長(zhǎng)為米,同時(shí)另一名同學(xué)測(cè)量樹(shù)的高度時(shí),發(fā)現(xiàn)樹(shù)的影子不全落在地面上,有一部分落在教學(xué)樓的第一級(jí)臺(tái)階上,測(cè)得此影子長(zhǎng)為米,一級(jí)臺(tái)階高為米,如圖所示,若此時(shí)落在地面上的影長(zhǎng)為米,則樹(shù)高為( )
A. 11.5米 B. 11.75米 C. 11.8米 D. 12.25米
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AC是平行四邊形ABCD的一條對(duì)角線,過(guò)AC中點(diǎn)O的直線分別交 AD,BC 于點(diǎn) E,F.
(1)求證:四邊形AECF是平行四邊形;
(2)當(dāng) EF 與 AC 滿足什么條件時(shí),四邊形 AECF 是菱形?并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某水果店進(jìn)行了一次促銷(xiāo)活動(dòng),一次性購(gòu)買(mǎi)種水果的單價(jià)(元)與購(gòu)買(mǎi)量(千克)的函數(shù)關(guān)系如圖.
(1)當(dāng)時(shí),單價(jià)為_______元.
(2)求圖中第②段函數(shù)圖象的解析式,并指出的取值范圍.
(3)促銷(xiāo)活動(dòng)期間,張老師計(jì)劃去該店買(mǎi)種水果10千克,那么張老師共需花費(fèi)多少錢(qián)?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,平行四邊形ABCD,點(diǎn)F是BC上的一點(diǎn),連接AF,∠FAD=60°,AE平分∠FAD,交CD于點(diǎn)E,且點(diǎn)E是CD的中點(diǎn),連接EF,已知AD=5,CF=3,則EF=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,二次函數(shù)y=﹣+mx+4﹣m的圖象與x軸交于A、B兩點(diǎn)(A在B的左側(cè)),與),軸交于點(diǎn)C.拋物線的對(duì)稱(chēng)軸是直線x=﹣2,D是拋物線的頂點(diǎn).
(1)求二次函數(shù)的表達(dá)式;
(2)當(dāng)﹣<x<1時(shí),請(qǐng)求出y的取值范圍;
(3)連接AD,線段OC上有一點(diǎn)E,點(diǎn)E關(guān)于直線x=﹣2的對(duì)稱(chēng)點(diǎn)E'恰好在線段AD上,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com