【題目】已知x=﹣2是一元二次方程x2+mx+4=0的一個解,則m的值是( 。
A.﹣4B.4C.0D.0或4
科目:初中數(shù)學(xué) 來源: 題型:
【題目】水龍頭關(guān)閉不嚴就會滴水,現(xiàn)在沒擰緊的水龍頭下面放一個容器,容器內(nèi)的盛水量W(L)與滴水時間t(h)的關(guān)系如圖所示,給合圖象解答下列問題:
(1)容器內(nèi)原有水多少升?
(2)求W與t之間的函數(shù)關(guān)系式,并計算在這種滴水狀態(tài)下一個月(30天)的滴水量是多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校對學(xué)生上學(xué)方式進行了一次抽樣調(diào)查,如圖是根據(jù)此次調(diào)查結(jié)果所繪制的一個未完成的扇形統(tǒng)計圖,已知該校學(xué)生共有2560人,被調(diào)查的學(xué)生中騎車的有21人,則下列四種說法中,不正確的是( )
A.被調(diào)查的學(xué)生有60人
B.被調(diào)查的學(xué)生中,步行的有27人
C.估計全校騎車上學(xué)的學(xué)生有1152人
D.扇形圖中,乘車部分所對應(yīng)的圓心角為54°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OC是∠AOM的平分線,OD是∠BOM的平分線.
(1)如圖1,若∠AOB=90°,∠AOM=60°,求∠COD的度數(shù);
(2)如圖2,若∠AOB=90°,∠AOM=130°,則∠COD=°;
(3)如圖3,若∠AOB=m°,∠AOM=n°,則∠COD=°.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一海輪位于燈塔P的西南方向,距離燈塔40了2海里的A處,它沿正東方向航行一段時間后,到達位于燈塔P的南偏東60°方向上的B處,求航程AB的值(結(jié)果保留根號).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】【現(xiàn)場學(xué)習(xí)】
定義:我們把絕對值符號內(nèi)含有未知數(shù)的方程叫做“含有絕對值的方程”.
如:|x|=2,|2x﹣1|=3,| |﹣x=1,…都是含有絕對值的方程.
怎樣求含有絕對值的方程的解呢?基本思路是:含有絕對值的方程→不含有絕對值的方程.
我們知道,根據(jù)絕對值的意義,由|x|=2,可得x=2或x=﹣2.
(1)[例]解方程:|2x﹣1|=3.
我們只要把2x﹣1看成一個整體就可以根據(jù)絕對值的意義進一步解決問題.
解:根據(jù)絕對值的意義,得2x﹣1=3或2x﹣1= .
解這兩個一元一次方程,得x=2或x=﹣1.
檢驗:
①當(dāng)x=2時,
原方程的左邊=|2x﹣1|=|2×2﹣1|=3,
原方程的右邊=3,
∵左邊=右邊
∴x=2是原方程的解.
②當(dāng)x=﹣1時,
原方程的左邊=|2x﹣1|=|2×(﹣1)﹣1|=3,
原方程的右邊=3,
∵左邊=右邊
∴x=﹣1是原方程的解.
綜合①②可知,原方程的解是:x=2,x=﹣1.
【解決問題】
解方程:| |﹣x=1.
(2)【解決問題】解方程:| |﹣x=1.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】一粒木質(zhì)中國象棋棋子“車”,它的正面雕刻一個“車”字,它的反面是平的,將棋子從一定高度下拋,落地反彈后可能是“車”字面朝上,也可能是“車”字朝下.由于棋子的兩面不均勻,為了估計“車”字朝上的機會,某實驗小組做了棋子下拋實驗,并把實驗數(shù)據(jù)整理如下:
實驗次數(shù) | 20 | 40 | 60 | 80 | 100 | 120 | 140 | 160 |
“車”字朝上的頻數(shù) | 14 | 18 | 38 | 47 | 52 |
| 78 | 88 |
相應(yīng)的頻率 | 0.7 | 0.45 | 0.63 | 0.59 | 0.52 | 0.55 | 0.56 |
|
(1)請將表中數(shù)據(jù)補充完整,并畫出折線統(tǒng)計圖中剩余部分.
(2)如果實驗繼續(xù)進行下去,根據(jù)上表數(shù)據(jù),這個實驗的頻率將接近于該事件發(fā)生的機會,請估計這個機會約是多少?
(3)在(2)的基礎(chǔ)上,進一步估計:將該“車”字棋子,按照實驗要求連續(xù)拋2次,則剛好使“車”字一次字面朝上,一次朝下的可能性為多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com