【題目】若(am+1bn+2)(a2n﹣1b2m)=a5b3 , 則m+n的值為( 。
A.1
B.2
C.3
D.﹣3
【答案】B
【解析】解答:根據(jù)單項式的乘法的法則,同底數(shù)冪相乘,底數(shù)不變,指數(shù)相加的性質(zhì)計算,然后再根據(jù)相同字母的次數(shù)相同列出方程組,整理即可得到m+n的值. 解:(am+1bn+2)(a2n﹣1b2m),
=am+1+2n﹣1bn+2+2m ,
=am+2nbn+2m+2 ,
=a5b3 ,
∴ ,
兩式相加,得3m+3n=6,
解得m+n=2.
故選B.
分析:本題主要考查單項式的乘法的法則和同底數(shù)冪的乘法的性質(zhì),根據(jù)數(shù)據(jù)的特點兩式相加求解即可,不需要分別求出m、n的值.
【考點精析】根據(jù)題目的已知條件,利用解二元一次方程組和同底數(shù)冪的乘法的相關(guān)知識可以得到問題的答案,需要掌握二元一次方程組:①代入消元法;②加減消元法;同底數(shù)冪的乘法法則aman=am+n(m,n都是正數(shù)).
科目:初中數(shù)學(xué) 來源: 題型:
【題目】用配方法解方程x2﹣6x+4=0,原方程應(yīng)變?yōu)椋ā 。?/span>
A.(x+3)2=13B.(x-3)2=5C.(x﹣3)2=13D.(x+3)2=5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知△ABC,AD平分∠BAC交BC于點D,BC的中點為M,ME∥AD,交BA的延長線于點E,交AC于點F.
(1)求證:AE=AF;
(2)求證:BE=(AB+AC).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠BAC=90°,AB=AC=3,點D在BC上且BD=2CD,E,F分別在AB,AC上運動且始終保持∠EDF=45°,設(shè)BE=x,CF=y,則y與x之間的函數(shù)關(guān)系用圖象表示為:( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y=2x+2沿y軸向下平移6個單位后與x軸的交點坐標(biāo)是( )
A. (-4,0) B. (-1,0) C. (0,2) D. (2,0)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】由6根鋼管首尾順次鉸接而成六邊形鋼架ABCDEF,相鄰兩鋼管可以轉(zhuǎn)動.已知各鋼管的長度為AB=DE=1米,BC=CD=EF=FA=2米.(鉸接點長度忽略不計)
(1)轉(zhuǎn)動鋼管得到三角形鋼架,如圖1,則點A,E之間的距離是 米.
(2)轉(zhuǎn)動鋼管得到如圖2所示的六邊形鋼架,有∠A=∠B=∠C=∠D=120°,現(xiàn)用三根鋼條連接頂點使該鋼架不能活動,則所用三根鋼條總長度的最小值是 米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩位同學(xué)做拋骰子(均勻正方體形狀)實驗,他們共拋了60次,出現(xiàn)向上點數(shù)的次數(shù)如表:
向上點數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
出現(xiàn)次數(shù) | 8 | 10 | 7 | 9 | 16 | 10 |
(1)計算出現(xiàn)向上點數(shù)為6的頻率.
(2)丙說:“如果拋600次,那么出現(xiàn)向上點數(shù)為6的次數(shù)一定是100次.”請判斷丙的說法是否正確并說明理由.
(3)如果甲乙兩同學(xué)各拋一枚骰子,求出現(xiàn)向上點數(shù)之和為3的倍數(shù)的概率.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com