【題目】定義一種新運(yùn)算:ab

1)請寫出函數(shù)yx1的解析式,并在所給的平面直角坐標(biāo)系中畫出該函數(shù)圖象;

2)觀察(1)中圖象,探究得到y的最小值是

【答案】1y,圖象見解析; 20

【解析】

1)根據(jù)新運(yùn)算可得到y= ,分別討論x00≤x≤1時,去絕對值符號,即可得到函數(shù)y=x1的解析式,在所給的平面直角坐標(biāo)系中畫出該函數(shù)圖象,即可得到答案,
2)觀察(1)中圖象,即可得到當(dāng)x=0時,y有最小值,即可得到答案.

解:(1)根據(jù)題意得:

y

當(dāng)x0時,|x|=﹣x,

當(dāng)0≤x≤1時,|x|x,

y,

該函數(shù)圖象如下圖所示:

2)由圖象可知:當(dāng)x0時,y有最小值0

故答案為:(1,圖象見解析;(20

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰三角形ABC中,AB=AC,以底邊BC的垂直平分線和BC所在的直線建立平面直角坐標(biāo)系,拋物線y=﹣x2+x+4經(jīng)過A、B兩點(diǎn).

(1)寫出點(diǎn)A、點(diǎn)B的坐標(biāo);

(2)若一條與y軸重合的直線l以每秒2個單位長度的速度向右平移,分別交線段OA、CA和拋物線于點(diǎn)E、M和點(diǎn)P,連接PA、PB.設(shè)直線l移動的時間為t(0<t<4)秒,求四邊形PBCA的面積S(面積單位)與t(秒)的函數(shù)關(guān)系式,并求出四邊形PBCA的最大面積;

(3)在(2)的條件下,是否存在t,使得△PAM是直角三角形?若存在,請求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是某學(xué)校高中兩個班的學(xué)生上學(xué)時步行、騎車、乘公交、乘私家車人數(shù)的扇形統(tǒng)計圖,已知乘公交人數(shù)是乘私家車人數(shù)的2.若步行人數(shù)是18人,則下列結(jié)論正確的是( )

A. 被調(diào)查的學(xué)生人數(shù)為90

B. 乘私家車的學(xué)生人數(shù)為9

C. 乘公交車的學(xué)生人數(shù)為20

D. 騎車的學(xué)生人數(shù)為16

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知反比例函數(shù)y1的圖象與一次函數(shù)y2=ax+b的圖象交于點(diǎn)A(1,4)和點(diǎn)B(m,-2).

(1)求這兩個函數(shù)的關(guān)系式;

(2)觀察圖象,寫出使得y1>y2成立的自變量x的取值范圍;

(3)如果點(diǎn)C與點(diǎn)A關(guān)于x軸對稱,求△ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知一次函數(shù)y=kx+b 的圖象與反比例函數(shù)y=的圖交象于AB兩點(diǎn),且點(diǎn)A的橫坐標(biāo)和點(diǎn)B的縱坐標(biāo)都是-2 , 求:

(1)一次函數(shù)的解析式;

(2)△AOB的面積

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在邊長為1的小正方形組成的網(wǎng)格中,△ABC和△DEF的頂點(diǎn)都在格點(diǎn)上,P1、P2、P3、P4、P5是△DEF邊上的5個格點(diǎn),請按要求完成下列各題:

(1)試證明△ABC為直角三角形;

(2)判斷△ABC和△DEF是否相似,并說明理由;

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場出售一批進(jìn)價為2元的賀卡,在市場營銷中發(fā)現(xiàn)商品的日銷售單價x元與日銷售量y個之間有如下關(guān)系:

x(元/個)

3

4

5

6

y(個)

20

15

12

10

1)根據(jù)表中數(shù)據(jù),在直角坐標(biāo)系描出實數(shù)對(x,y)的對應(yīng)點(diǎn)

2)猜測并確定yx之間的函數(shù)關(guān)系式,并畫出圖象;

3)設(shè)經(jīng)營此賀卡的銷售利潤為W元,試求出Wx之間的函數(shù)關(guān)系式,若物價局規(guī)定此賀卡的售價最高不能超過10/個,請你求出當(dāng)日銷售單價x定為多少元時,才能獲得最大日銷售利潤?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如下圖,在平面直角坐標(biāo)系中,直線ABx軸交于點(diǎn)A,y軸交于點(diǎn)B,與直線OC:y=x交于點(diǎn)C.

(1)若直線AB解析式為.

①求點(diǎn)C的坐標(biāo);

②根據(jù)圖象,求關(guān)于x的不等式0<-x+10<x的解集;

(2)如下圖,作∠AOC的平分線ON,ABON,垂足為E,ΔOAC的面積為9,且OA=6,P、Q分別為線段OAOE上的動點(diǎn),連接AQPQ,試探索AQ+PQ是否存在最小值?若存在,求出這個最小值:若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=-[(x-2)2n]x軸交于點(diǎn)A(m-2,0)B(2m+3,0)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,連接BC.

(1)m,n的值;

(2)點(diǎn)N為拋物線上的一動點(diǎn),且位于直線BC上方,連接CNBN.求△NBC面積的最大值.

查看答案和解析>>

同步練習(xí)冊答案