【題目】如圖,在等腰三角形ABC中,AB=AC,以底邊BC的垂直平分線和BC所在的直線建立平面直角坐標系,拋物線y=﹣x2+x+4經(jīng)過A、B兩點.
(1)寫出點A、點B的坐標;
(2)若一條與y軸重合的直線l以每秒2個單位長度的速度向右平移,分別交線段OA、CA和拋物線于點E、M和點P,連接PA、PB.設直線l移動的時間為t(0<t<4)秒,求四邊形PBCA的面積S(面積單位)與t(秒)的函數(shù)關(guān)系式,并求出四邊形PBCA的最大面積;
(3)在(2)的條件下,是否存在t,使得△PAM是直角三角形?若存在,請求出點P的坐標;若不存在,請說明理由.
【答案】(1)A(8,0)、B(0,4);(2)S=﹣8t2+32t+32,S最大值為64.(3)存在符合條件的點P,坐標為(3,10).
【解析】試題分析:(1)拋物線的解析式中,令x=0,能確定點B的坐標;令y=0,能確定點A的坐標.(2)四邊形PBCA可看作△ABC、△PBA兩部分;△ABC的面積是定值,關(guān)鍵是求出△PBA的面積表達式;若設直線l與直線AB的交點為Q,先用t表示出線段PQ的長,而△PAB的面積可由(PQOA)求得,在求出S、t的函數(shù)關(guān)系式后,由函數(shù)的性質(zhì)可求得S的最大值.(3)△PAM中,∠APM是銳角,而PM∥y軸,∠AMP=∠ACO也不可能是直角,所以只有∠PAC是直角一種可能,即 直線AP、直線AC垂直,此時兩直線的斜率乘積為-1,先求出直線AC的解析式,聯(lián)立拋物線的解析式后可求得點P的坐標.
試題解析:
(1)拋物線y=﹣0.5x2+3.5x+4中:令x=0,y=4,則 B(0,4);
令y=0,0=﹣0.5x2+3.5x+4,解得 x1=﹣1、x2=8,則 A(8,0);∴A(8,0)、B(0,4).
(2)△ABC中,AB=AC,AO⊥BC,則OB=OC=4,∴C(0,﹣4).
由A(8,0)、B(0,4),得:直線AB:y=﹣0.5x+4;
依題意,知:OE=2t,即 E(2t,0);
∴P(2t,﹣2t2+7t+4)、Q(2t,﹣t+4),PQ=(﹣2t2+7t+4)﹣(﹣t+4)=﹣2t2+8t;
S=S△ABC+S△PAB=0.5×8×8+0.5×(﹣2t2+8t)×8=﹣8t2+32t+32=﹣8(t﹣2)2+64;
∴當t=2時,S有最大值,且最大值為64.
(3)∵PM∥y軸,∴∠AMP=∠ACO<90°;
而∠APM是銳角,所以△PAM若是直角三角形,只能是∠PAM=90°;
由A(8,0)、C(0,﹣4),得:直線AC:y=0.5x﹣4;
所以,直線AP可設為:y=﹣2x+h,代入A(8,0),得:﹣16+h=0,h=16
∴直線AP:y=﹣2x+16,聯(lián)立拋物線的解析式,∴存在符合條件的點P,且坐標為(3,10).
科目:初中數(shù)學 來源: 題型:
【題目】矩形ABCD的對角線AC、BD相交于點O,∠AOD=120°,AC=8,則△ABO的周長為( )
A. 16 B. 12 C. 24 D. 20
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】若拋物線 y=x2+2x+c 與 y 軸交點為(0,﹣3),則下列說法不正確的是( )
A. 拋物線開口向上 B. 當 x>﹣1 時,y 隨 x 的增大而減小
C. 對稱軸為 x=﹣1 D. c 的值為﹣3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,Rt△ABC的三個頂點坐標為 A(﹣3,0),B(﹣3,﹣3),C(﹣1,﹣3)
(1)求Rt△ABC的面積;
(2)在圖中作出△ABC關(guān)于x軸對稱的圖形△DEF,并寫出D,E,F(xiàn)的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是杭州PM2.5來源統(tǒng)計圖,則根據(jù)統(tǒng)計圖得出的下列判斷中,正確的是( )
A.表示汽車尾氣排放的圓心角約72°
B.表示建筑揚塵的占6%
C.煤炭以及其他燃料燃放約為建筑揚塵的5倍
D.汽車尾氣排放影響最大
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知正方形ABCD的邊長為6,E是BC中點,將正方形邊CD沿DE折疊到DF,將AD折疊,使AD與DF重合,折痕交AB于G,連接BF,CF,現(xiàn)在有如下4個結(jié)論:①G、F、E三點共線;②BG=4;③△BEF∽△CDF;④S△BFG=.
在以上4個結(jié)論中,正確的有 ________________(填番號).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知拋物線y=a(x-5)(x+1)與x軸交于點A,B兩點,與y軸交于點C(0,).
(1)求拋物線的解析式;
(2)在拋物線上是否存在點P,使△ACP是以點A為直角頂點的直角三角形?若存在,求出符合條件的點P的坐標;若不存在,請說明理由;
(3)點G為拋物線上的一動點,過點G作GE垂直于y軸于點E,交直線AC于點D,過點D作x軸的垂線,垂足為點F,連接EF.當線段EF的長度最短時,求出點G的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系中,點A(﹣2,1)與點B關(guān)于原點對稱,則點B的坐標為( )
A.(﹣2,1)
B.(2,﹣1)
C.(2,1)
D.(﹣2,﹣1)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com