【題目】在一場(chǎng)籃球比賽中,一名球員在關(guān)鍵時(shí)刻投出一球,已知球出手時(shí)離地面高2米,與籃圈中心的水平距離為7米,當(dāng)球出手后水平距離為4米時(shí)到達(dá)最大高度4米,已知籃球運(yùn)行的軌跡為拋物線,籃圈中心距離地面3.19米.
(1)以地面為x軸,籃球出手時(shí)垂直地面所在直線為y軸建立平面直角坐標(biāo)系,求籃球運(yùn)行的拋物線軌跡的解析式;
(2)通過(guò)計(jì)算,判斷這個(gè)球員能否投中?
【答案】(1);(2)不能投中
【解析】
(1)根據(jù)題意可得拋物線的頂點(diǎn),設(shè)函數(shù)的頂點(diǎn)式,再將(0,2)代入,求得二次項(xiàng)系數(shù),從而可得拋物線的解析式;
(2)判斷當(dāng)x=7時(shí),函數(shù)值是否等于3.19即可.
(1)依題意得拋物線頂點(diǎn)為(4,4),
則設(shè)拋物線的解析式為y=a(x﹣4)2+4
依題意得拋物線經(jīng)過(guò)點(diǎn)(0,2)
∴a(0﹣4)2+4=2
解得
∴拋物線的解析式為
(2)當(dāng)x=7時(shí),=
∴這個(gè)球員不能投中.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC的頂點(diǎn)的坐標(biāo)分別為A(2,2),B(1,0),C(3,1)
(1)畫(huà)出△ABC關(guān)于x軸對(duì)稱(chēng)的;
(2)畫(huà)出△ABC繞原點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°的△A2B1C2,寫(xiě)出點(diǎn)C2的坐標(biāo);
(3)在(1)(2)的基礎(chǔ)上,圖中的,關(guān)于哪個(gè)點(diǎn)中心對(duì)稱(chēng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC中,∠BAC=90°,AB=3,AC=4,點(diǎn)D是BC的中點(diǎn),將△ABD沿AD翻折得到△AED,連CE
(1)求證:AD=ED
(2)連接BE,猜想△BEC的形狀,并說(shuō)明理由
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知等腰直角,點(diǎn)是斜邊上一點(diǎn)(不與重合),是的外接圓的直徑.
(1)求證:是等腰直角三角形;
(2)若的直徑為2,求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,點(diǎn)E是正方形ABCD的邊DC上一點(diǎn),把△ADE順時(shí)針旋轉(zhuǎn)△ABF的位置.
(1)旋轉(zhuǎn)中心是點(diǎn) ,旋轉(zhuǎn)角度是 度;
(2)若連結(jié)EF,則△AEF是 三角形;并證明
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖,E為正方形ABCD邊AB上一動(dòng)點(diǎn)(不與A重合),AB=4,將△DAE繞著點(diǎn)A逆時(shí)針旋轉(zhuǎn)90°得到△BAF,再將△DAE沿直線DE折疊得到△DME.下列結(jié)論:①連結(jié)AM,則AM∥FB;②連結(jié)FE,當(dāng)F、E、M共線時(shí),AE=4-4;③連結(jié)EF、EC、FC,若△FEC是等腰三角形,則AE=4-4;④連結(jié)EF,設(shè)FC、ED交于點(diǎn)O,若FE平分∠BFC,則O是FC的中點(diǎn),且AE=2-2,其中正確的個(gè)數(shù)有( )個(gè).
A.4B.3C.2D.1
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】若一個(gè)等腰三角形的三邊長(zhǎng)均滿(mǎn)足方程x2-6x+8=0,則此三角形的周長(zhǎng)為______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】 如圖,AB是⊙O的直徑,點(diǎn)E為線段OB上一點(diǎn)(不與O、B重合),作EC⊥OB,交⊙O于點(diǎn)C,作直徑CD,過(guò)點(diǎn)C的切線交DB的延長(zhǎng)線于點(diǎn)P,作AF⊥PC于點(diǎn)F,連接CB.
(1)求證:AC平分∠FAB;
(2)求證:BC2=CECP;
(3)若,⊙O的面積為12π,求PF的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】經(jīng)過(guò)江漢平原的滬蓉(上海﹣成都)高速鐵路即將動(dòng)工.工程需要測(cè)量漢江某一段的寬度.如圖①,一測(cè)量員在江岸邊的A處測(cè)得對(duì)岸岸邊的一根標(biāo)桿B在它的正北方向,測(cè)量員從A點(diǎn)開(kāi)始沿岸邊向正東方向前進(jìn)100米到達(dá)點(diǎn)C處,測(cè)得∠ACB=68°.
(1)求所測(cè)之處江的寬度(sin68°≈0.93,cos68°≈0.37,tan68°≈2.48.);
(2)除(1)的測(cè)量方案外,請(qǐng)你再設(shè)計(jì)一種測(cè)量江寬的方案,并在圖②中畫(huà)出圖形.(不用考慮計(jì)算問(wèn)題,敘述清楚即可)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com