【題目】某區(qū)進行課堂教學(xué)改革,將學(xué)生分成5個學(xué)習(xí)小組,采取團團坐的方式.如圖所示,這是某校八(1)班教室簡圖,點、、、分別代表五個學(xué)習(xí)小組的位置.已知點的坐標(biāo)為(-1,3).

(1)請按題意建立平面直角坐標(biāo)系(橫軸和縱軸均為小正方形的邊所在直線,每個小正方形邊長為1個單位長度),寫出圖中其他幾個學(xué)習(xí)小組的坐標(biāo);

(2)若(1)中建立的平面直角坐標(biāo)系坐標(biāo)原點為,點的延長線上,請寫出、、之間的等量關(guān)系,并說明原因.

【答案】1)見解析,B4,3),C(﹣10),D40),E(﹣2,5);(2)∠FOD=∠FAB+∠AFO,見解析

【解析】

1)根據(jù)A點的坐標(biāo)畫出平面直角坐標(biāo)系,再得出各個點的坐標(biāo)即可;

2)根據(jù)平行線的性質(zhì)和三角形外角性質(zhì)得出即可.

解:(1)畫出坐標(biāo)系:

由圖可得,B4,3),C(﹣1,0),D40),E(﹣2,5);

2)∵ABOD,

∴∠FOD=∠FGB,

∵∠FGB是△AFG的外角,

∴∠FGB=∠FAB+∠AFO,

∴∠FOD=∠FAB+∠AFO

故答案為:∠FOD=∠FAB+∠AFO

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某鄉(xiāng)鎮(zhèn)要在生活垃圾存放區(qū)建一個老年活動中心,這樣必須把1200立方米的生活垃圾運走

(1)假如每天能運x立方米,所需時間為y,寫出yx之間的函數(shù)解析式(不要求寫出自變量的取值范圍);

(2)若每輛拖拉機一天能運12立方米5輛這樣的拖拉機要用多少天才能運完?

(3)在(2)的條件下運了8天后,剩下的任務(wù)要在不超過6天的時間內(nèi)完成那么至少需要增加多少輛這樣的拖拉機才能按時完成任務(wù)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2017年5月25日,中國國際大數(shù)據(jù)產(chǎn)業(yè)博覽會在貴陽會展中心開幕,博覽會設(shè)了編號為1~6號展廳共6個,小雨一家計劃利用兩天時間參觀其中兩個展廳:第一天從6個展廳中隨機選擇一個,第二天從余下的5個展廳中再隨機選擇一個,且每個展廳被選中的機會均等.

(1)第一天,1號展廳沒有被選中的概率是  ;

(2)利用列表或畫樹狀圖的方法求兩天中4號展廳被選中的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在ΔABC中,∠A=90°,∠C=45°,BC=8,∠ABC的角平分線交AC于點D,DEBC,則CΔDEC=___________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若將一幅三角板按如圖所示的方式放置,則下列結(jié)論中不正確的是( )

A. 1=∠3 B. 如果∠230°,則有ACDE

C. 如果∠230°,則有BCAD D. 如果∠230°,必有∠4=∠C

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,按以下步驟作圖:①分別以點A和點C為圓心,以大于AC的長為半徑作弧,兩弧相交于M、N兩點;②作直線MNBC于點D,連接AD.若AB=BD,AB=6,C=30°,則△ACD的面積為_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某花店準(zhǔn)備購進甲、乙兩種花卉,若購進甲種花卉20盆,乙種花卉50盆,需要720元;若購進甲種花卉40盆,乙種花卉30盆,需要880元.

1)求購進甲、乙兩種花卉,每盆各需多少元?

2)該花店銷售甲種花卉每盆可獲利6元,銷售乙種花卉每盆可獲利1元,現(xiàn)該花店準(zhǔn)備拿出800元全部用來購進這兩種花卉,設(shè)購進甲種花卉m盆,求當(dāng)m的值等于40時,兩種花卉全部銷售后獲得的利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx﹣5與坐標(biāo)軸交于A(﹣1,0),B(5,0),C(0,﹣5)三點,頂點為D.

(1)請直接寫出拋物線的解析式及頂點D的坐標(biāo);

(2)連接BC與拋物線的對稱軸交于點E,點P為線段BC上的一個動點(點P不與B、C兩點重合),過點PPFDE交拋物線于點F,設(shè)點P的橫坐標(biāo)為m.

①是否存在點P,使四邊形PEDF為平行四邊形?若存在,求出點P的坐標(biāo);若不存在,說明理由.

②過點FFHBC于點H,求△PFH周長的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果任意選擇一對有序整數(shù)(m,n),其中|m|≤1,|n|≤3,每一對這樣的有序整數(shù)被選擇的可能性是相等的,那么關(guān)于x的方程x2+nx+m=0有兩個相等實數(shù)根的概率是______

查看答案和解析>>

同步練習(xí)冊答案