【題目】某企業(yè)接到一批粽子生產(chǎn)任務(wù),按要求在15天內(nèi)完成,約定這批粽子的出廠(chǎng)價(jià)為每只6元,為按時(shí)完成任務(wù),該企業(yè)招收了新工人,設(shè)新工人李明第x天生產(chǎn)的粽子數(shù)量為y只,y與x滿(mǎn)足下列關(guān)系式: y=

(1)李明第幾天生產(chǎn)的粽子數(shù)量為420只?
(2)如圖,設(shè)第x天每只粽子的成本是p元,p與x之間的關(guān)系可用圖中的函數(shù)圖象來(lái)刻畫(huà).若李明第x天創(chuàng)造的利潤(rùn)為w元,求w與x之間的函數(shù)表達(dá)式,并求出第幾天的利潤(rùn)最大,最大利潤(rùn)是多少元?(利潤(rùn)=出廠(chǎng)價(jià)﹣成本)
(3)設(shè)(2)小題中第m天利潤(rùn)達(dá)到最大值,若要使第(m+1)天的利潤(rùn)比第m天的利潤(rùn)至少多48元,則第(m+1)天每只粽子至少應(yīng)提價(jià)幾元?

【答案】
(1)解:設(shè)李明第n天生產(chǎn)的粽子數(shù)量為420只,

由題意可知:30n+120=420,

解得n=10.

答:第10天生產(chǎn)的粽子數(shù)量為420只


(2)解:由圖象得,當(dāng)0≤x≤9時(shí),p=4.1;

當(dāng)9≤x≤15時(shí),設(shè)P=kx+b,

把點(diǎn)(9,4.1),(15,4.7)代入得, ,

解得 ,

∴p=0.1x+3.2,

①0≤x≤5時(shí),w=(6﹣4.1)×54x=102.6x,當(dāng)x=5時(shí),w最大=513(元);

②5<x≤9時(shí),w=(6﹣4.1)×(30x+120)=57x+228,

∵x是整數(shù),

∴當(dāng)x=9時(shí),w最大=741(元);

③9<x≤15時(shí),w=(6﹣0.1x﹣3.2)×(30x+120)=﹣3x2+72x+336,

∵a=﹣3<0,

∴當(dāng)x=﹣ =12時(shí),w最大=768(元);

綜上,當(dāng)x=12時(shí),w有最大值,最大值為768


(3)解:由(2)可知m=12,m+1=13,

設(shè)第13天提價(jià)a元,由題意得,w13=(6+a﹣p)(30x+120)=510(a+1.5),

∴510(a+1.5)﹣768≥48,解得a≥0.1.

答:第13天每只粽子至少應(yīng)提價(jià)0.1元


【解析】(1)把y=420代入y=30x+120,解方程即可求得;(2)根據(jù)圖象求得成本p與x之間的關(guān)系,然后根據(jù)利潤(rùn)等于訂購(gòu)價(jià)減去成本價(jià),然后整理即可得到W與x的關(guān)系式,再根據(jù)一次函數(shù)的增減性和二次函數(shù)的增減性解答;(3)根據(jù)(2)得出m+1=13,根據(jù)利潤(rùn)等于訂購(gòu)價(jià)減去成本價(jià)得出提價(jià)a與利潤(rùn)w的關(guān)系式,再根據(jù)題意列出不等式求解即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,平面直角坐標(biāo)系中,拋物線(xiàn)y= 與x 軸的兩個(gè)交點(diǎn)分別為A(﹣3,0),B(1,0),與y軸的交點(diǎn)為D,對(duì)稱(chēng)軸與拋物線(xiàn)交于點(diǎn)C,與x軸負(fù)半軸交于點(diǎn)H.

(1)求拋物線(xiàn)的表達(dá)式;
(2)點(diǎn)E,F(xiàn) 分別是拋物線(xiàn)對(duì)稱(chēng)軸CH 上的兩個(gè)動(dòng)點(diǎn)(點(diǎn)E 在點(diǎn)F 上方),且EF=1,求使四邊形BDEF 的周長(zhǎng)最小時(shí)的點(diǎn)E,F(xiàn) 坐標(biāo)及最小值;
(3)如圖2,點(diǎn)P 為對(duì)稱(chēng)軸左側(cè),x 軸上方的拋物線(xiàn)上的點(diǎn),PQ⊥AC 交AC 于點(diǎn)Q,是否存在這樣的點(diǎn)P 使△PCQ與△ACH 相似,若存在請(qǐng)求出點(diǎn)P 的坐標(biāo),若不存在請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:
(1)2﹣1+sin30°﹣|﹣2|;
(2)(﹣1)0﹣|3﹣π|+

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,P是AB所對(duì)弦AB上一動(dòng)點(diǎn),過(guò)點(diǎn)P作PM⊥AB交AB于點(diǎn)M,連接MB,過(guò)點(diǎn)P作PN⊥MB于點(diǎn)N.已知AB=6cm,設(shè)A、P兩點(diǎn)間的距離為xcm,P、N兩點(diǎn)間的距離為ycm.(當(dāng)點(diǎn)P與點(diǎn)A或點(diǎn)B重合時(shí),y的值為0)
小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對(duì)函數(shù)y隨自變量x的變化而變化的規(guī)律進(jìn)行了探究.
下面是小東的探究過(guò)程,請(qǐng)補(bǔ)充完整:
(1)通過(guò)取點(diǎn)、畫(huà)圖、測(cè)量,得到了x與y的幾組值,如下表:

x/cm

0

1

2

3

4

5

6

y/cm

0

2.0

2.3

2.1

0.9

0

(說(shuō)明:補(bǔ)全表格時(shí)相關(guān)數(shù)值保留一位小數(shù))
(2)建立平面直角坐標(biāo)系,描出以補(bǔ)全后的表中各對(duì)對(duì)應(yīng)值為坐標(biāo)的點(diǎn),畫(huà)出該函數(shù)的圖象.
(3)結(jié)合畫(huà)出的函數(shù)圖象,解決問(wèn)題:當(dāng)△PAN為等腰三角形時(shí),AP的長(zhǎng)度約為cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算下列各題.
(1)計(jì)算:|﹣5|+ ×21;
(2)化簡(jiǎn):a(2﹣a)+(a+1)(a﹣1).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】實(shí)驗(yàn)室里,水平桌面上有甲、乙、丙三個(gè)圓柱形容器(容器足夠高),底面半徑之比為1:2:1,用兩個(gè)相同的管子在容器的5cm高度處連通(即管子底離容器底5cm),現(xiàn)三個(gè)容器中,只有甲中有水,水位高1cm,如圖所示.若每分鐘同時(shí)向乙和丙注入相同量的水,開(kāi)始注水1分鐘,乙的水位上升 cm.
(1)開(kāi)始注水1分鐘,丙的水位上升cm.
(2)開(kāi)始注入分鐘的水量后,乙的水位比甲高0.5cm.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,O為原點(diǎn),四邊形OABC的頂點(diǎn)A在x軸的正半軸上,OA=4,OC=2,點(diǎn)P,點(diǎn)Q分別是邊BC,邊AB上的點(diǎn),連結(jié)AC,PQ,點(diǎn)B1是點(diǎn)B關(guān)于PQ的對(duì)稱(chēng)點(diǎn).

(1)若四邊形OABC為矩形,如圖1,
①求點(diǎn)B的坐標(biāo);
②若BQ:BP=1:2,且點(diǎn)B1落在OA上,求點(diǎn)B1的坐標(biāo);
(2)若四邊形OABC為平行四邊形,如圖2,且OC⊥AC,過(guò)點(diǎn)B1作B1F∥x軸,與對(duì)角線(xiàn)AC、邊OC分別交于點(diǎn)E、點(diǎn)F.若B1E:B1F=1:3,點(diǎn)B1的橫坐標(biāo)為m,求點(diǎn)B1的縱坐標(biāo),并直接寫(xiě)出m的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,拋物線(xiàn) 與x軸交于A、B兩點(diǎn),與y軸交于C點(diǎn),且A(﹣1,0).

(1)求拋物線(xiàn)的解析式及頂點(diǎn)D的坐標(biāo);
(2)判斷△ABC的形狀,證明你的結(jié)論;
(3)點(diǎn)M是拋物線(xiàn)對(duì)稱(chēng)軸上的一個(gè)動(dòng)點(diǎn),當(dāng)CM+AM的值最小時(shí),求M的坐標(biāo);
(4)在線(xiàn)段BC下方的拋物線(xiàn)上有一動(dòng)點(diǎn)P,求△PBC面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列結(jié)論:①abc<0,②b<a+c,③4a+2b+c>0,④2c<3b,⑤a+b<m(am+b)(m≠1)中正確的是(

A.②④⑤
B.①②④
C.①③④
D.①③④⑤

查看答案和解析>>

同步練習(xí)冊(cè)答案