精英家教網 > 初中數學 > 題目詳情

【題目】如圖,拋物線 與x軸交于A、B兩點,與y軸交于C點,且A(﹣1,0).

(1)求拋物線的解析式及頂點D的坐標;
(2)判斷△ABC的形狀,證明你的結論;
(3)點M是拋物線對稱軸上的一個動點,當CM+AM的值最小時,求M的坐標;
(4)在線段BC下方的拋物線上有一動點P,求△PBC面積的最大值.

【答案】
(1)

解:把A(﹣1,0)代入 得到:0= ×(﹣1)2﹣b﹣2,

解得b=﹣ ,

則該拋物線的解析式為:y= x2 x﹣2.

又∵y= x2 x﹣2= (x﹣ 2 ,

∴頂點D的坐標是( ,﹣


(2)

解:由(1)知,該拋物線的解析式為:y= x2 x﹣2.則C(0,﹣2).

又∵y= x2 x﹣2= (x+1)(x﹣4),

∴A(﹣1,0),B(4,0),

∴AC= ,BC=2 ,AB=5,

∴AC2+BC2=AB2,

∴△ABC是直角三角形


(3)

解:由(2)知,B(4,0),C(0,﹣2),

由拋物線的性質可知:點A和B關于對稱軸對稱,如答圖1所示:

∴AM=BM,

∴AM+CM=BM+CM≥BC=2

∴CM+AM的最小值是2


(4)

解:如答圖2,過點P作y軸的平行線交BC于F.

設直線BC的解析式為y=kx﹣2(k≠0).

把B(4,0)代入,得

0=4k﹣2,

解得k=

故直線BC的解析式為:y= x﹣2.

故設P(m, m2 m﹣2),則F(m, m﹣2),

∴SPBC= PFOB= ×( m﹣2﹣ m2+ m+2)×4=﹣(m﹣2)2+4,即SPBC=﹣(m﹣2)2+4,

∴當m=2時,△PBC面積的最大值是4.


【解析】(1)把點A的坐標代入函數解析式來求b的值;然后把函數解析式轉化為頂點式,即可得到點D的坐標;(2)由兩點間的距離公式分別求出AC,BC,AB的長,再根據勾股定理即可判斷出△ABC的形狀;(3)根據拋物線的對稱性可知AM=BM.所以AM+CM=BM+CM≥BC=2 ;(4)過點P作y軸的平行線交BC于F.利用待定系數法求得直線BC的解析式,可求得點F的坐標,設P點的橫坐標為m,可得點P的縱坐標,繼而可得線段PF的長,然后利用面積和即SPBC=SCPF+SBPF= PF×BO,即可求出.
【考點精析】解答此題的關鍵在于理解二次函數的圖象的相關知識,掌握二次函數圖像關鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點,以及對二次函數的性質的理解,了解增減性:當a>0時,對稱軸左邊,y隨x增大而減;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減。

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】如圖1,在Rt△ABC中,∠A=90°,AB=AC,點D,E分別在邊AB,AC上,AD=AE,連接DC,點M,P,N分別為DE,DC,BC的中點.

(1)觀察猜想
圖1中,線段PM與PN的數量關系是 , 位置關系是;
(2)探究證明
把△ADE繞點A逆時針方向旋轉到圖2的位置,連接MN,BD,CE,判斷△PMN的形狀,并說明理由;

(3)拓展延伸
把△ADE繞點A在平面內自由旋轉,若AD=4,AB=10,請直接寫出△PMN面積的最大值.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某企業(yè)接到一批粽子生產任務,按要求在15天內完成,約定這批粽子的出廠價為每只6元,為按時完成任務,該企業(yè)招收了新工人,設新工人李明第x天生產的粽子數量為y只,y與x滿足下列關系式: y=

(1)李明第幾天生產的粽子數量為420只?
(2)如圖,設第x天每只粽子的成本是p元,p與x之間的關系可用圖中的函數圖象來刻畫.若李明第x天創(chuàng)造的利潤為w元,求w與x之間的函數表達式,并求出第幾天的利潤最大,最大利潤是多少元?(利潤=出廠價﹣成本)
(3)設(2)小題中第m天利潤達到最大值,若要使第(m+1)天的利潤比第m天的利潤至少多48元,則第(m+1)天每只粽子至少應提價幾元?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,已知拋物線y=x2+bx+c的圖象與x軸的一個交點為B(4,0),另一個交點為A,且與y軸交于點C(0,4).

(1)求直線BC與拋物線的解析式;
(2)若點M是拋物線在x軸下方圖象上的一動點,過點M作MN∥y軸交直線BC于點N,當 MN的值最大時,求△BMN的周長.
(3)在(2)的條件下,MN取得最大值時,若點P是拋物線在x軸下方圖象上任意一點,以BC為邊作平行四邊形CBPQ,設平行四邊形CBPQ的面積為S1 , △ABN的面積為S2 , 且S1=4S2 , 求點P的坐標.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在Rt△ABC中,∠C=90°,BC=3,AC=4,點P在以C為圓心,5為半徑的圓上,連結PA,PB.若PB=4,則PA的長為

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】在Rt△ACB中,∠C=90°,點O是AB的中點,點M,N分別在邊AC,BC上,OM⊥ON,連MN,AC=4,BC=8,設AM=a,BN=b,MN=c.

(1)求證:a2+b2=c2;
(2)①若a=1,求b;②探究a與b的函數關系;
(3)△CMN面積的最大值為(不寫解答過程)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知:如圖,在梯形ABCD中,AD∥BC,AD= BC,點M是邊BC的中點, = =

(1)填空: = , = . (結果用 、 表示).
(2)直接在圖中畫出向量3 + .(不要求寫作法,但要指出圖中表示結論的向量)

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在△ABC中,∠B=90°,AB=4,BC=3,將△ABC繞點A逆時針旋轉,使點B落在線段AC上的點D處,點C落在點E處,則C、E兩點間的距離為(

A.
B.2
C.3
D.2

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】某興趣小組用儀器測測量湛江海灣大橋主塔的高度.如圖,在距主塔從AE60米的D處.用儀器測得主塔頂部A的仰角為68°,已知測量儀器的高CD=1.3米,求主塔AE的高度(結果精確到0.1米)
(參考數據:sin68°≈0.93,cos68°≈0.37,tan68°≈2.48)

查看答案和解析>>

同步練習冊答案