【題目】如圖,在下列條件中,不能證明ABD≌△ACD的是( ).

A.BD=DC, AB=AC B.ADB=ADC,BD=DC

C.B=C,BAD=CAD D. B=CBD=DC

【答案】D

【解析】

兩個(gè)三角形有公共邊AD,可利用SSSSAS,ASA,AAS的方法判斷全等三角形。
解答:

AD=AD,
A、當(dāng)BD=DC,AB=AC時(shí),利用SSS證明△ABD≌△ACD,正確;
B、當(dāng)ADB=ADC,BD=DC時(shí),利用SAS證明△ABD≌△ACD,正確;
C、當(dāng)B=C,BAD=CAD時(shí),利用AAS證明△ABD≌△ACD,正確;
D、當(dāng)B=C,BD=DC時(shí),符合SSA的位置關(guān)系,不能證明△ABD≌△ACD,錯(cuò)誤。
故選D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,BC是⊙O的切線,D是⊙O上的一點(diǎn),且AD∥CO.
(1)求證:△ADB∽△OBC;
(2)連結(jié)CD,試說明CD是⊙O的切線;
(3)若AB=2, ,求AD的長(zhǎng).(結(jié)果保留根號(hào))

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是半圓O的直徑,C是半圓O上一點(diǎn),弦AD平分∠BAC,交BC于點(diǎn)E,若AB=6,AD=5,則DE的長(zhǎng)為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,已知A、O、B三點(diǎn)在同一直線上,射線OD、OE分別平分∠AOC、BOC

(1)求∠DOE的度數(shù);

(2)如圖2,在∠AOD內(nèi)引一條射線OF,使∠COF=,其他不變,設(shè)∠DOF=

①求∠AOF的度數(shù)(用含的代數(shù)式表示).

②若∠BOD是∠AOF2倍,求∠DOF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)平面內(nèi)已點(diǎn)A3,0)、B(-5,3),將點(diǎn)A向左平移6個(gè)單位到達(dá)C點(diǎn)將點(diǎn)B向下平移6個(gè)單位到達(dá)D點(diǎn)

1)寫出C點(diǎn)、D點(diǎn)的坐標(biāo)C __________,D ____________ ;

2)把這些點(diǎn)按ABCDA順次連接起來,這個(gè)圖形的面積是__________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,ACB90°,點(diǎn)D,E分別在ABAC上,CEBC,連接CD,將線段CD繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)90°后得CF,連接EF.

(1)補(bǔ)充完成圖形;

(2)EFCD,求證:BDC90°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊△ABC中

(1)如圖1,P,Q是BC邊上的兩點(diǎn),AP=AQ,∠BAP=20°,求∠AQB的度數(shù);

(2)點(diǎn)P,Q是BC邊上的兩個(gè)動(dòng)點(diǎn)(不與點(diǎn)B,C重合),點(diǎn)P在點(diǎn)Q的左側(cè),且AP=AQ,點(diǎn)Q關(guān)于直線AC的對(duì)稱點(diǎn)為M,連接AM,PM.

①依題意將圖2補(bǔ)全;

②小茹通過觀察、實(shí)驗(yàn)提出猜想:在點(diǎn)P,Q運(yùn)動(dòng)的過程中,始終有PA=PM,小茹把這個(gè)猜想與同學(xué)們進(jìn)行交流,通過討論,形成了證明該猜想的幾種想法:

想法1:要證明PA=PM,只需證△APM是等邊三角形;

想法2:在BA上取一點(diǎn)N,使得BN=BP,要證明PA=PM,只需證△ANP≌△PCM;

想法3:將線段BP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,得到線段BK,要證PA=PM,只需證PA=CK,PM=CK…

請(qǐng)你參考上面的想法,幫助小茹證明PA=PM(一種方法即可).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某校為了了解學(xué)生大課間活動(dòng)的跳繩情況,隨機(jī)抽取了50名學(xué)生每分鐘跳繩的次數(shù)進(jìn)行統(tǒng)計(jì),把統(tǒng)計(jì)結(jié)果繪制成如表和直方圖.

次數(shù)

70≤x<90

90≤x<110

110≤x<130

130≤x<150

150≤x<170

人數(shù)

8

23

16

2

1

根據(jù)所給信息,回答下列問題:

(1)本次調(diào)查的樣本容量是
(2)本次調(diào)查中每分鐘跳繩次數(shù)達(dá)到110次以上(含110次)的共有的共有人;
(3)根據(jù)上表的數(shù)據(jù)補(bǔ)全直方圖;
(4)如果跳繩次數(shù)達(dá)到130次以上的3人中有2名女生和一名男生,學(xué)校從這3人中抽取2名學(xué)生進(jìn)行經(jīng)驗(yàn)交流,求恰好抽中一男一女的概率(要求用列表法或樹狀圖寫出分析過程).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知點(diǎn)A(2,3)和點(diǎn)B(0,2),點(diǎn)A在反比例函數(shù)y= 的圖象上.作射線AB,再將射線AB繞點(diǎn)A按逆時(shí)針方向旋轉(zhuǎn)45°,交反比例函數(shù)圖象于點(diǎn)C,則點(diǎn)C的坐標(biāo)為.

查看答案和解析>>

同步練習(xí)冊(cè)答案