【題目】如圖,AB是⊙O的直徑,BC是⊙O的切線,D是⊙O上的一點,且AD∥CO.
(1)求證:△ADB∽△OBC;
(2)連結CD,試說明CD是⊙O的切線;
(3)若AB=2, ,求AD的長.(結果保留根號)

【答案】
(1)∵AB是⊙O的直徑,

∴∠ADB=90°,

∵BC是⊙O的切線,

∴∠OBC=90°,

∵AD∥CO,

∴∠A=∠BOC,

∴△ADB∽△OBC


(2)如圖,連接OD,

∵AB是⊙O的直徑,

∴∠ADB=90°,

∵AD∥CO,

∴∠DFO=90°,

∵∠ODB=∠OBD,

∴∠DOF=∠BOF,

∵OD=OB,OC=OC,

在△ODC和△OBC中,

∴△ODC≌△OBC(SAS),

∴∠CDO=∠CBO=90°,

∴CD是⊙O的切線


(3)∵AB=2,

∴OB=1,

,

∴OC= =

∵AD∥CO,

∴∠DAB=∠COB,

∵∠ADB=∠OBC=90°,

∴△ADB∽△OBC,

= ,即 = ,

解得AD=


【解析】(1)運用∠A=∠BOC,∠ADB=∠OBC證明即可.(2)連接OD,SAS證明△ODC≌△OBC,得出∠CDO=∠CBO=90°,即可得出CD是⊙O的切線;(3)先求出OB,OC的長,再運用△ADB∽△OBC,求出AD的長.
【考點精析】本題主要考查了相似三角形的判定與性質(zhì)的相關知識點,需要掌握相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,從下列四個條件:① , , , 中,任取三個為條件,余下的一個為結論,則最多可以構成正確的結論的個數(shù)是(

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,拋物線經(jīng)過點A(﹣1,0)和B(0,2 ),對稱軸為x=

(1)求拋物線的解析式;
(2)拋物線與x軸交于另一個交點為C,點D在線段AC上,已知AD=AB,若動點P從A出發(fā)沿線段AC以每秒1個單位長度的度數(shù)勻速運動,同時另一動點Q以某一速度從B出發(fā)沿線段BC勻速運動,問是否存在某一時刻,使線段PQ被直線BD垂直平分?若存在,求出點Q的運動速度;若不存在,請說明理由.
(3)在(2)的前提下,過點B的直線l與x軸的負半軸交于點M,是否存在點M,使以A,B,M為頂點的三角形與△PBC相似?如果存在,請直接寫出M的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】商店只有雪碧、可樂、果汁、奶汁四種飲料,每種飲料數(shù)量充足,某同學去該店購買飲料,每種飲料被選中的可能性相同.
(1)若他去買一瓶飲料,則他買到奶汁的概率是
(2)若他兩次去買飲料,每次買一瓶,且兩次所買飲料品種不同,請用樹狀圖或列表法求出他恰好買到雪碧和奶汁的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB、CD為⊙O的直徑,弦AE∥CD,連接BE交CD于點F,過點E作直線EP與CD的延長線交于點P,使∠PED=∠C.
(1)求證:PE是⊙O的切線;
(2)求證:ED平分∠BEP;
(3)若⊙O的半徑為5,CF=2EF,求PD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某中學九(1)班為了了解全班學生喜歡球類活動的情況,采取全面調(diào)查的方法,從足球、乒乓球、籃球、排球等四個方面調(diào)查了全班學生的興趣愛好,根據(jù)調(diào)查的結果組建了4個興趣小組,并繪制成如圖所示的兩幅不完整的統(tǒng)計圖(如圖①,②,要求每位學生只能選擇一種自己喜歡的球類),請你根據(jù)圖中提供的信息解答下列問題:
(1)九(1)班的學生人數(shù)為 , 并把條形統(tǒng)計圖補充完整;
(2)扇形統(tǒng)計圖中m= , n= , 表示“足球”的扇形的圓心角是度;
(3)排球興趣小組4名學生中有3男1女,現(xiàn)在打算從中隨機選出2名學生參加學校的排球隊,請用列表或畫樹狀圖的方法求選出的2名學生恰好是1男1女的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,∠BAC=45°,AB=4cm,將△ABC繞點B按逆時針方向旋轉45°后得到△A′BC′,則陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某工程交由甲、乙兩個工程隊來完成,已知甲工程隊單獨完成需要60天,乙工程隊單獨完成需要40

(1)若甲工程隊先做30天后,剩余由乙工程隊來完成,還需要用時   

(2)若甲工程隊先做20天,乙工程隊再參加,兩個工程隊一起來完成剩余的工程,求共需多少天完成該工程任務?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在下列條件中,不能證明ABD≌△ACD的是( ).

A.BD=DC, AB=AC B.ADB=ADC,BD=DC

C.B=CBAD=CAD D. B=C,BD=DC

查看答案和解析>>

同步練習冊答案