【題目】某學校為了改善辦學條件,計劃購置一批實物投影儀和一批臺式電腦,經(jīng)投標,購買1臺實物投影儀和2臺電腦共用了11000元;購買2臺實物投影儀和3臺電腦共用了18000元.
(1)求購買1臺實物投影儀和1臺電腦各需多少元?
(2)根據(jù)該校實際情況,需購買實物投影儀和臺式電腦的總數(shù)為50臺,要求購買的總費用不超過180000元,該校最多能購買多少臺電腦?

【答案】
(1)解:解:設購買1臺實物投影儀需x元,1臺電腦需y元.

則由題意可得 ,解得 ;

答:購買1臺實物投影儀需3000元,1臺電腦需4000元.


(2)解:設購買了a臺電腦.

由題意可得,3000(50﹣a)+4000a≤180000,

a≤30.

答:最少可以購買30臺電腦.


【解析】(1)設投影儀每臺x元,電腦每臺y元,根據(jù)條件建立方程組求出其解即可;(2)設電腦為a臺,則投影儀為(50﹣a)臺,根據(jù)要求購買的總費用不超過180000元,列出不等式解答即可.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在扇形AOB中,∠AOB=90°,正方形CDEF的頂點C是弧AB的中點,點D在OB上,點E在OB的延長線上,當正方形CDEF的邊長為2時,陰影部分的面積為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系xOy中,直線y=kx+2與x軸、y軸分別交于點A(﹣1,0)和點B,與反比例函數(shù)y= 的圖象在第一象限內交于點C(1,n).
(1)求k的值;
(2)求反比例函數(shù)的解析式;
(3)過x軸上的點D(a,0)作平行于y軸的直線l(a>1),分別與直線AB和雙曲線y= 交于點P、Q,且PQ=2QD,求點D的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ACB=90°,∠A=30°,BC=2,將△ABC繞點C按順時針方向旋轉n度后,得到△EDC,此時,點D在AB邊上,斜邊DE交AC邊于點F,則n的大小和圖中陰影部分的面積分別為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,直角三角形AOB的頂點A、B分別落在坐標軸上.O為原點,點A的坐標為(6,0),點B的坐標為(0,8).動點M從點O出發(fā).沿OA向終點A以每秒1個單位的速度運動,同時動點N從點A出發(fā),沿AB向終點B以每秒 個單位的速度運動.當一個動點到達終點時,另一個動點也隨之停止運動,設動點M、N運動的時間為t秒(t>0).

(1)當t=3秒時,直接寫出點N的坐標;
(2)在此運動的過程中,△MNA的面積是否存在最大值?若存在,請求出最大值;若不存在,請說明理由;
(3)當t為何值時,△MNA是一個等腰三角形?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=6cm,BC=8cm.如果點E由點B出發(fā)沿BC方向向點C勻速運動,同時點F由點D出發(fā)沿DA方向向點A勻速運動,它們的速度分別為2cm/s和1cm/s.FQ⊥BC,分別交AC、BC于點P和Q,設運動時間為t(s)(0<t<4).

(1)連結EF、DQ,若四邊形EQDF為平行四邊形,求t的值;
(2)連結EP,設△EPC的面積為ycm2 , 求y與t的函數(shù)關系式,并求y的最大值;
(3)若△EPQ與△ADC相似,請直接寫出t的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,一種某小區(qū)的兩幢10層住宅樓間的距離為AC=30m,由地面向上依次為第1層、第2層、…、第10層,每層高度為3m.假設某一時刻甲樓在乙樓側面的影長EC=h,太陽光線與水平線的夾角為α.
(1)用含α的式子表示h(不必指出α的取值范圍);
(2)當α=30°時,甲樓樓頂B點的影子落在乙樓的第幾層?若α每小時增加15°,從此時起幾小時后甲樓的影子剛好不影響乙樓采光?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】
(1)計算:( 1+|3tan30°﹣1|﹣(π﹣3)0;
(2)先化簡,再求值: ,其中x= ﹣3.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=BC,對角線BD平分∠ABC,P是BD上一點,過點P作PM⊥AD,PN⊥CD,垂足分別為M,N.
(1)求證:∠ADB=∠CDB;
(2)若∠ADC=90°,求證:四邊形MPND是正方形.

查看答案和解析>>

同步練習冊答案