【題目】如圖,在扇形AOB中,∠AOB=90°,正方形CDEF的頂點(diǎn)C是弧AB的中點(diǎn),點(diǎn)D在OB上,點(diǎn)E在OB的延長線上,當(dāng)正方形CDEF的邊長為2時(shí),陰影部分的面積為

【答案】π﹣2
【解析】解:連接OC ∵在扇形AOB中∠AOB=90°,正方形CDEF的頂點(diǎn)C是弧AB的中點(diǎn),
∴∠COD=45°,
∴OC= CD=2 ,
∴陰影部分的面積=扇形BOC的面積﹣三角形ODC的面積
= ×22
=π﹣2.
所以答案是π﹣2.

【考點(diǎn)精析】利用正方形的性質(zhì)和扇形面積計(jì)算公式對題目進(jìn)行判斷即可得到答案,需要熟知正方形四個角都是直角,四條邊都相等;正方形的兩條對角線相等,并且互相垂直平分,每條對角線平分一組對角;正方形的一條對角線把正方形分成兩個全等的等腰直角三角形;正方形的對角線與邊的夾角是45o;正方形的兩條對角線把這個正方形分成四個全等的等腰直角三角形;在圓上,由兩條半徑和一段弧圍成的圖形叫做扇形;扇形面積S=π(R2-r2).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O直徑,C、D為⊙O上不同于A、B的兩點(diǎn),∠ABD=2∠BAC,連接CD.過點(diǎn)C作CE⊥DB,垂足為E,直線AB與CE相交于F點(diǎn).
(1)求證:CF為⊙O的切線;
(2)當(dāng)BF=5,sinF= 時(shí),求BD的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,以等邊三角形ABC一邊AB為直徑的⊙O與邊AC、BC分別交于點(diǎn)D、E,過點(diǎn)D作DF⊥BC,垂足為F.
(1)求證:DF為⊙O的切線;
(2)若等邊三角形ABC的邊長為4,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=a,∠BAC=18°,動點(diǎn)P、Q分別在直線BC上運(yùn)動,且始終保持∠PAQ=99°.設(shè)BP=x,CQ=y,則y與x之間的函數(shù)關(guān)系用圖象大致可以表示為( )

A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在圖1﹣﹣圖4中,菱形ABCD的邊長為3,∠A=60°,點(diǎn)M是AD邊上一點(diǎn),且DM= AD,點(diǎn)N是折線AB﹣BC上的一個動點(diǎn).

(1)如圖1,當(dāng)N在BC邊上,且MN過對角線AC與BD的交點(diǎn)時(shí),則線段AN的長度為
(2)當(dāng)點(diǎn)N在AB邊上時(shí),將△AMN沿MN翻折得到
△A′MN,如圖2,
①若點(diǎn)A′落在AB邊上,則線段AN的長度為 ;
②當(dāng)點(diǎn)A′落在對角線AC上時(shí),如圖3,求證:四邊形AM A′N是菱形;
③當(dāng)點(diǎn)A′落在對角線BD上時(shí),如圖4,求 的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在大樓AB的正前方有一斜坡CD,已知斜坡CD長6 米,坡角∠DCE等于45°,小紅在斜坡下的點(diǎn)C處測得樓頂B的仰角為60°,在斜坡上的頂點(diǎn)D處測得樓頂B的仰角為45°,其中點(diǎn)A、C、E在同一直線上.

(1)求斜坡CD的高度DE;
(2)求大樓AB的高度(結(jié)果保留根號).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】綜合題。
(1)計(jì)算:4sin60°+|3﹣ |﹣( 1+(π﹣2017)0
(2)解方程組:

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是( ) ①面積之比為1:2的兩個相似三角形的周長之比是1:4;②三視圖相同的幾何體是正方體;③﹣27沒有立方根;④對角線互相垂直的四邊形是菱形;⑤某中學(xué)人數(shù)相等的甲、乙兩班學(xué)生參加了同一次數(shù)學(xué)測驗(yàn),班平均分和方差分別為 =82分, =82分,S2=245,S2=190,那么成績較為整齊的是乙班.
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某學(xué)校為了改善辦學(xué)條件,計(jì)劃購置一批實(shí)物投影儀和一批臺式電腦,經(jīng)投標(biāo),購買1臺實(shí)物投影儀和2臺電腦共用了11000元;購買2臺實(shí)物投影儀和3臺電腦共用了18000元.
(1)求購買1臺實(shí)物投影儀和1臺電腦各需多少元?
(2)根據(jù)該校實(shí)際情況,需購買實(shí)物投影儀和臺式電腦的總數(shù)為50臺,要求購買的總費(fèi)用不超過180000元,該校最多能購買多少臺電腦?

查看答案和解析>>

同步練習(xí)冊答案