【題目】如圖,四邊形ABCD的頂點(diǎn)在⊙O上,BD是⊙O的直徑,延長(zhǎng)CD、BA 交于點(diǎn)E,連接AC、BD交于點(diǎn)F,作AHCE,垂足為點(diǎn)H,已知∠ADE=ACB.

(1)求證:AH是⊙O的切線;

(2)若OB=4,AC=6,求sinACB的值;

(3)若,求證:CD=DH.

【答案】(1)見(jiàn)解析;(2);(3)見(jiàn)解析.

【解析】分析:(1)、連接OA,根據(jù)圓周角定理得出∠ADE=ADB,然后證明△DAB和△DAE全等,從而得出AB=AE,結(jié)合OB=OD得出OA∥DE,從而得出答案;(2)、根據(jù)切線的性質(zhì)得出AE=AC=AB=6,根據(jù)Rt△ABD的三角函數(shù)得出答案;(3)、根據(jù)OA是中位線得出△CDF和△AOF相似,從而得出答案.

詳解:(1)證明:連接OA,由圓周角定理得,∠ACB=ADB,∵∠ADE=ACB,∴∠ADE=ADB,

BD是直徑,∴∠DAB=DAE=90°,在△DAB和△DAE中,

∠BAD=∠EAD,DA=DA,∠BDA=∠EDA,∴△DAB≌△DAE,AB=AE,又∵OB=OD,

OADE,又∵AHDE,OAAH,AH是⊙O的切線;

(2)解:由(1)知,∠E=DBE,DBE=ACD,∴∠E=ACD,AE=AC=AB=6.

RtABD中,AB=6,BD=8,ADE=ACB,sinADB=,即sinACB=;

(3)證明:由(2)知,OA是△BDE的中位線,∴OADE,OA=DE.

∴△CDF∽△AOF,CD=OA=DE,即CD=CE,AC=AE,AHCE,

CH=HE=CE,CD=CH,CD=DH.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】(初步探究)

1)如圖1,在四邊形ABCD中,∠B=∠C90°,點(diǎn)E是邊BC上一點(diǎn),ABEC,BECD,連接AE、DE.判斷△AED的形狀,并說(shuō)明理由.

(解決問(wèn)題)

2)如圖2,在長(zhǎng)方形ABCD中,點(diǎn)P是邊CD上一點(diǎn),在邊BC、AD上分別作出點(diǎn)E、F,使得點(diǎn)FEP是一個(gè)等腰直角三角形的三個(gè)頂點(diǎn),且PEPF,∠FPE90°.要求:僅用圓規(guī)作圖,保留作圖痕跡,不寫(xiě)作法.

(拓展應(yīng)用)

3)如圖3,在平面直角坐標(biāo)系xOy中,已知點(diǎn)A2,0),點(diǎn)B4,1),點(diǎn)C在第一象限內(nèi),若△ABC是等腰直角三角形,則點(diǎn)C的坐標(biāo)是   

4)如圖4,在平面直角坐標(biāo)系xOy中,已知點(diǎn)A1,0),點(diǎn)Cy軸上的動(dòng)點(diǎn),線段CA繞著點(diǎn)C按逆時(shí)針?lè)较蛐D(zhuǎn)90°至線段CB,CACB,連接BO、BA,則BO+BA的最小值是   

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】根據(jù)材料,解答問(wèn)題

如圖,數(shù)軸上有點(diǎn),對(duì)應(yīng)的數(shù)分別是6,-4,4-1,則兩點(diǎn)間的距離為兩點(diǎn)間的距離為;兩點(diǎn)間的距離為;由此,若數(shù)軸上任意兩點(diǎn)分別表示的數(shù)是,則兩點(diǎn)間的距離可表示為反之,表示有理數(shù)在數(shù)軸上的對(duì)應(yīng)點(diǎn)之間的距離,稱之為絕對(duì)值的幾何意義

問(wèn)題應(yīng)用1

1)如果表示-1的點(diǎn)和表示的點(diǎn)之間的距離是2,則點(diǎn)對(duì)應(yīng)的的值為___________;

2)方程的解____________

3)方程的解______________ ;

問(wèn)題應(yīng)用2

如圖,若數(shù)軸上表示的點(diǎn)為.

4的幾何意義是數(shù)軸上_____________,當(dāng)__________的值最小是____________;

5的幾何意義是數(shù)軸上_______的最小值是__________,此時(shí)點(diǎn)在數(shù)軸上應(yīng)位于__________上;

6)根據(jù)以上推理方法可求的最小值是___________,此時(shí)__________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠BAC90°,ADCD,點(diǎn)E是邊AC的中點(diǎn),連接DEDE的延長(zhǎng)線與邊BC相交于點(diǎn)F,AGBC,交DE于點(diǎn)G,連接AFCG.

(1)求證:AFBF;

(2)如果ABAC,求證:四邊形AFCG是正方形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖1,在矩形ABCD中,AD=4,AB=2,將矩形ABCD繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)α(0α90°)得到矩形AEFG.延長(zhǎng)CBEF交于點(diǎn)H.

(1)求證:BH=EH;

(2)如圖2,當(dāng)點(diǎn)G落在線段BC上時(shí),求點(diǎn)B經(jīng)過(guò)的路徑長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋物線y=ax2+bx+cx軸于A、B兩點(diǎn),交y軸于C點(diǎn),其中﹣2<h<﹣1,﹣1<xB<0,下列結(jié)論①abc<0;(4a﹣b)(2a+b)<0;4a﹣c<0;④若OC=OB,則(a+1)(c+1)>0,正確的為( 。

A. ①②③④ B. ①②④ C. ①③④ D. ①②③

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是某月的月歷,圖中帶陰影的方框恰好蓋住四個(gè)數(shù),不改變帶陰影的方框的形狀大小,移動(dòng)方框的位置.

(1)若帶陰影的方框蓋住的4個(gè)數(shù)中,A表示的數(shù)是x,求這4個(gè)數(shù)的和(用含x的代數(shù)式表示);

(2)若帶陰影的方框蓋住的4個(gè)數(shù)之和為82,求出A表示的數(shù);

(3)4個(gè)數(shù)之和可能為38112嗎?如果可能,請(qǐng)求出這4個(gè)數(shù),如果不可能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,長(zhǎng)方形OABC的頂點(diǎn)A、C分別在x軸、y軸的正半軸上.點(diǎn)B的坐標(biāo)為(8,4),將該長(zhǎng)方形沿OB翻折,點(diǎn)A的對(duì)應(yīng)點(diǎn)為點(diǎn)D,ODBC交于點(diǎn)E.

(I)證明:EO=EB;

(Ⅱ)點(diǎn)P是直線OB上的任意一點(diǎn),且OPC是等腰三角形,求滿足條件的點(diǎn)P的坐標(biāo);

(Ⅲ)點(diǎn)MOB上任意一點(diǎn),點(diǎn)NOA上任意一點(diǎn),若存在這樣的點(diǎn)M、N,使得AM+MN最小,請(qǐng)直接寫(xiě)出這個(gè)最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】中國(guó)一帶一路戰(zhàn)略給沿線國(guó)家和地區(qū)帶來(lái)很大的經(jīng)濟(jì)效益,沿線某地區(qū)居民2015年年收入200美元,預(yù)計(jì)2017年年收入將達(dá)到1000美元,設(shè)2015年到2017年該地區(qū)居民年人均收入平均增長(zhǎng)率為x,可列方程為  

A. B.

C. D.

查看答案和解析>>

同步練習(xí)冊(cè)答案