如圖,AB是半圓O的直徑,AB=,弦AC=,點(diǎn)P為半圓O上一點(diǎn)(不與點(diǎn)A、

C)重合. 則∠APC的度數(shù)為        .

 


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在中,于點(diǎn),,,并且.求的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,A,B是反比例函數(shù)的圖象上關(guān)于原點(diǎn)對(duì)稱的任意兩點(diǎn),BCx軸,ACy軸,△ABC的面積記為S,則

A.S = 2          B. 2<S<4    C.S = 4          D.S>4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


(1)如圖1,在等邊△ABC中,點(diǎn)M是邊BC上的任意一點(diǎn)(不含端點(diǎn)B、C),聯(lián)結(jié)AM,以AM為邊作等邊△AMN,聯(lián)結(jié)CN.求證:∠ABC=∠ACN.

【類比探究】

(2)如圖2,在等邊△ABC中,點(diǎn)M是邊BC延長(zhǎng)線上的任意一點(diǎn)(不含端點(diǎn)C),其它條件不變,(1)中結(jié)論∠ABC=∠ACN還成立嗎?請(qǐng)說(shuō)明理由.

【拓展延伸】

(3)如圖3,在等腰△ABC中,BA=BC,點(diǎn)M是邊BC上的任意一點(diǎn)(不含端點(diǎn)B、C),聯(lián)結(jié)AM,以AM為邊作等腰△AMN,使頂角∠AMN=∠ABC.聯(lián)結(jié)CN.試探究∠ABC與∠ACN的數(shù)量關(guān)系,并說(shuō)明理由.

xkb1.com

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


反比例函數(shù)的圖象如圖所示,以下結(jié)論:①常數(shù);②當(dāng)時(shí),函數(shù)值;③的增大而減;④若點(diǎn)在此函數(shù)圖象上,則點(diǎn)也在此函數(shù)圖象上.其中正確的是 ( )

A.①②③④ B.①②③ C.①②④ D.②③④

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


已知二次函數(shù)的圖象對(duì)稱軸為,且過(guò)點(diǎn)B(-1,0).

此二次函數(shù)的表達(dá)式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


如圖,在平面直角坐標(biāo)系中,以點(diǎn)為圓心,以為半徑作圓,與x軸交于A、B兩點(diǎn),與y軸交于CD兩點(diǎn),二次函數(shù)的圖象經(jīng)

過(guò)點(diǎn)AB、C,頂點(diǎn)為E.

(1)求此二次函數(shù)的表達(dá)式;

(2)設(shè)∠DBCa,∠CBEb,求sin(ab)的值;

(3)坐標(biāo)軸上是否存在點(diǎn)P,使得以P、A、C為頂點(diǎn)的三角形與△BCE相似.若存在,請(qǐng)直接寫出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


已知△ABC,用直尺和圓規(guī),根據(jù)下列要求作圖(保留作圖痕跡,不寫作法)

(1)作∠ABC的平分線BD交AC于點(diǎn)D;

(2)作線段BD的垂直平分線交AB于點(diǎn)E,交BC于點(diǎn)F。由(1)(2)可得,你發(fā)現(xiàn)了BEDF是什么四邊形?(原創(chuàng))

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:


三角形的三條邊長(zhǎng)分別是,則的取值范圍是         .

查看答案和解析>>

同步練習(xí)冊(cè)答案