【題目】如圖,把一個(gè)直角三角形ACB(∠ACB=90°)繞著頂點(diǎn)B順時(shí)針旋轉(zhuǎn)60°,使得點(diǎn)C旋轉(zhuǎn)到AB邊上的一點(diǎn)D,點(diǎn)A旋轉(zhuǎn)到點(diǎn)E的位置.F,G分別是BD,BE上的點(diǎn),BF=BG,延長(zhǎng)CF與DG交于點(diǎn)H.
(1)求證:CF=DG;
(2)求出∠FHG的度數(shù).
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)(為非零常數(shù)).
()若對(duì)稱軸是直線.
①求二次函數(shù)的解析式.
②二次函數(shù)(為實(shí)數(shù))圖象的頂點(diǎn)在軸上,求的值.
()把拋物線向上平移個(gè)單位得到新的拋物線,若,求的圖像落在軸上方的部分對(duì)應(yīng)的的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知線段, 于點(diǎn),且, 是射線上一動(dòng)點(diǎn), 、分別是, 的中點(diǎn),過(guò)點(diǎn), , 的圓與的另一交點(diǎn)(點(diǎn)在線段上),連結(jié), .
()當(dāng)時(shí),則的度數(shù)為__________.
()在點(diǎn)的運(yùn)動(dòng)過(guò)程中,當(dāng)時(shí),取四邊形一邊的兩端點(diǎn)和線段上一點(diǎn),若以這三點(diǎn)為頂點(diǎn)的三角形是直角三角形,當(dāng)時(shí),則的值為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線AC上取點(diǎn)B,在其同一側(cè)作兩個(gè)等邊三角形△ABD 和△BCE ,連接AE,CD與GF,下列結(jié)論正確的有( )
① AE DC;②AHC120;③△AGB≌△DFB;④BH平分AHC;⑤GF∥AC
A.①②④B.①③⑤C.①③④⑤D.①②③④⑤
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABE中,E 90,AC 是BAE的角平分線。
(1)若B 30,求BAC的度數(shù);
(2)若 D 是BC的中點(diǎn),△ABC的面積為24,CD3,求AE的長(zhǎng)。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】△ABC是等邊三角形,點(diǎn)E、F分別為射線AC、射線CB上兩點(diǎn),CE=BF,直線EB、AF交于點(diǎn)D.
(1)當(dāng)E、F在邊AC、BC上時(shí)如圖,求證:△ABF≌△BCE.
(2)當(dāng)E在AC延長(zhǎng)線上時(shí),如圖,AC=10,S△ABC=25,EG⊥BC于G,EH⊥AB于H,HE=8,EG= .
(3)E、F分別在AC、CB延長(zhǎng)線上時(shí),如圖,BE上有一點(diǎn)P,CP=BD,∠CPB是銳角,求證:BP=AD.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知直線PA交⊙O于A、B兩點(diǎn),CD是⊙O的切線,切點(diǎn)且C,過(guò)點(diǎn)C作CD⊥PA于D,若AD:DC=1:3,AB=8,求⊙O的半徑.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,已知A(3,0),以OA為一邊在第一象限內(nèi)畫(huà)正方形OABC,D(m,0)為x軸上的一個(gè)動(dòng)點(diǎn),以BD為一邊畫(huà)正方形BDEF(點(diǎn)F在直線AB右側(cè)).
(1)當(dāng)m>3時(shí)(如圖1),試判斷線段AF與CD的數(shù)量關(guān)系,并說(shuō)明理由.
(2)當(dāng)AF=5時(shí),求點(diǎn)E的坐標(biāo);
(3)當(dāng)D點(diǎn)從A點(diǎn)向右移動(dòng)4個(gè)單位,求這一過(guò)程中F點(diǎn)移動(dòng)的路程是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知四邊形ABCD是正方形,點(diǎn)P在直線BC上,點(diǎn)G在直線AD上(P,G不與正方形頂點(diǎn)重合,且在CD的同側(cè)),PD=PG,DF⊥PG于點(diǎn)H,交直線AB于點(diǎn)F,將線段PG繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到線段PE,連結(jié)EF.
(1)如圖1,當(dāng)點(diǎn)P與點(diǎn)G分別在線段BC與線段AD上時(shí).
①請(qǐng)直接寫(xiě)出線段DG與PC的數(shù)量關(guān)系(不要求證明);
②求證:四邊形PEFD是菱形;
(2)如圖2,當(dāng)點(diǎn)P與點(diǎn)G分別在線段BC與線段AD的延長(zhǎng)線上時(shí),請(qǐng)猜想四邊形PEFD是怎樣的特殊四邊形,并證明你的猜想.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com