【題目】如圖,正方形的邊長為12,點、分別在、上,若,且,則______

【答案】

【解析】

首先延長FDG,使DGBE,利用正方形的性質得∠B=∠CDF=∠CDG90°CBCD;利用SAS定理得BCE≌△DCG,利用全等三角形的性質易證GCF≌△ECF,利用勾股定理可得DF,求出AF,設BEx,利用GFEF,解得x,再利用勾股定理可得CE

解:如圖,延長FDG,使DGBE

連接CGEF;

∵四邊形ABCD為正方形,

BCEDCG中,,

∴△BCE≌△DCGSAS),

CGCE,∠DCG=∠BCE,

∴∠GCF45°,

GCFECF中,,

∴△GCF≌△ECFSAS),

GFEF,

DFABAD12

AF1248,

BEx,則AE12x,EFGF4x

RtAEF中,由勾股定理得:(12x282=(4x2

解得:x6,

BE6

CE,

故答案為:

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,AB是⊙O的直徑,直線CD與⊙O相切于點C,且與AB的延長線交于點E.點C是弧BF的中點.

(1)求證:ADCD

(2)若∠CAD=30°.⊙O的半徑為3,一只螞蟻從點B出發(fā),沿著BE--EC--CB爬回至點B,求螞蟻爬過的路程(π≈3.14,≈1.73,結果保留一位小數(shù).)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知數(shù)軸上點A表示的數(shù)為﹣6,點B在數(shù)軸上A點右側,且AB14,動點M從點A出發(fā),以每秒5個單位長度的速度沿數(shù)軸向右勻速運動,設運動時間為tt0)秒.

1)寫出數(shù)軸上點B表示的數(shù)   ,點M表示的數(shù)   (用含t的式子表示);

2)動點N從點B出發(fā),以每秒3個單位長度的速度沿數(shù)軸向右勻速運動,若點M,N同時出發(fā),問點M運動多少秒時追上點N

3)若PAM的中點,FMB的中點,點M在運動過程中,線段PF的長度是否發(fā)生變化?若變化,請說明理由;若不變,請求出線段PF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】計算.

1)(﹣3)×(+4)﹣48÷|﹣6|

277°53'26″+333°(結果用度分秒形式表示)

3)[﹣14﹣(105×)]×[3﹣(﹣32]

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知矩形ABCD的頂點A、D分別落在x軸、y軸,OD=2OA=6,ADAB=31.則點B的坐標是_______

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】為了解某校八年級男生的體能情況,體育老師從中隨機抽取部分男生進行引體向上測試,并對成績進行了統(tǒng)計,繪制成兩個不完整的統(tǒng)計圖,請結合圖中信息回答下列問題:

1)本次抽測的男生有 人,請將條形圖補充完成,本次抽測成績的中位數(shù)是 次;

2)若規(guī)定引體向上6次及其以上為體能達標,則該校500名八年級男生中估計有多少人體能達標?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】對于實數(shù)ab,我們可以用min{a,b}表示a,b兩數(shù)中較小的數(shù),例如min{3,-1}=-1,min{22}2. 類似地,若函數(shù)y1y2都是x的函數(shù),則ymin{y1y2}表示函數(shù)y1y2取小函數(shù)

1)設y1x,y2,則函數(shù)ymin{x }的圖像應該是 中的實線部分.

2)請在下圖中用粗實線描出函數(shù)ymin{(x2)2, (x2)2}的圖像,并寫出該圖像的三條不同性質:

;

;

;

3)函數(shù)ymin{(x4)2, (x2)2}的圖像關于 對稱.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】張華隨爸爸來西安游玩,他們還有四個旅游景點沒去,分別是西安以東的兵馬俑和華山,西安以西的乾陵和法門寺。由于僅剩兩天的時間,張華不能游玩所有風景區(qū),于是爸爸讓張華從四張旅游景點圖片(大小、形狀及背面圖案完全相同)中抽簽確定.爸爸將這四張圖片背面朝上洗勻后,讓張華先隨機抽取一張(不放回),再抽取一張,若抽到的兩個景點都在西安以東或都在西安以西,則爸爸帶他到這兩個景點旅游,否則只能去一個景點旅游(兵馬俑、華山、乾陵、法門寺這四張圖片分別用B,H,Q,F(xiàn)表示).

(1)求張華抽到景點兵馬俑的圖片的概率;

(2)請你用列表或畫樹狀圖的方法求張華能去兩個景點旅游的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】我們定義:如果一個三角形一條邊上的高等于這條邊,那么這個三角形叫做等高底三角形,這條邊叫做這個三角形的等底”。

(1)概念理解:

如圖1,, ,.,試判斷是否是等高底三角形,請說明理由.

(2)問題探究:

如圖2, 等高底三角形,等底,作關于所在直線的對稱圖形得到,連結交直線于點.若點的重心,的值.

(3)應用拓展:

如圖3,已知,之間的距離為2.“等高底等底在直線,在直線,有一邊的長是.繞點按順時針方向旋轉得到,所在直線交于點.的值.

查看答案和解析>>

同步練習冊答案