【題目】甲、乙兩車從A城出發(fā)前往B城,在整個行程中,兩車離開A城的距離y與t的對應(yīng)關(guān)系如圖所示:

(1)A、B兩城之間距離是多少千米?
(2)求乙車出發(fā)多長時間追上甲車?
(3)直接寫出甲車出發(fā)多長時間,兩車相距20千米.

【答案】
(1)解:由圖象可知A、B兩城之間距離是300千米.
(2)解:設(shè)乙車出發(fā)x小時追上甲車.

由圖象可知,甲的速度= =60千米/小時.

乙的速度= =75千米/小時.

由題意(75﹣60)x=60

解得x=4小時.


(3)解:設(shè)y=kx+b,則 解得 ,

∴y=60x﹣300,

設(shè)y=k′x+b′,則 ,解得 ,

∴y=100x﹣600,

∵兩車相距20千米,

∴y﹣y=20或y﹣y=20或y=20或y=280,

即60x﹣300﹣(100x﹣600)=20或100x﹣600﹣(60x﹣300)=20或60x﹣300=20或60x﹣300=280

解得x=7或8或 ,

∵7﹣5=2,8﹣5=3, ﹣5= , 5=

∴甲車出發(fā)2小時或3小時或 小時或 小時,兩車相距20千米.


【解析】解題的關(guān)鍵是學(xué)會利用函數(shù)解決實際問題,學(xué)會轉(zhuǎn)化的思想,把問題轉(zhuǎn)化為方程,屬于中考?碱}型.(1)根據(jù)圖象即可得出結(jié)論.(2)先求出甲乙兩人的速度,再列出方程即可解決問題.(3)根據(jù)y﹣y=20或y﹣y=20,列出方程即可解決.本題考查一次函數(shù)的應(yīng)用、行程問題等知識,

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列算式
=±3;② =9;③26÷23=4;④ =2016;⑤a+a=a2
運算結(jié)果正確的概率是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某批發(fā)門市銷售兩種商品,甲種商品每件售價為300元,乙種商品每件售價為80元.新年來臨之際,該門市為促銷制定了兩種優(yōu)惠方案:

方案一:買一件甲種商品就贈送一件乙種商品;

方案二:按購買金額打八折付款.

某公司為獎勵員工,購買了甲種商品20件,乙種商品x(x≥20)件.

(1)分別寫出優(yōu)惠方案一購買費用y1(元)、優(yōu)惠方案二購買費用y2元)與所買乙種商品x(件)之間的函數(shù)關(guān)系式;

(2)若該公司共需要甲種商品20件,乙種商品40件.設(shè)按照方案一的優(yōu)惠辦法購買了m件甲種商品,其余按方案二的優(yōu)惠辦法購買.請你寫出總費用wm之間的關(guān)系式;利用wm之間的關(guān)系式說明怎樣購買最實惠.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形ABCD中,E、F分別為BC、CD的中點,連接AE,BF交于點G,將△BCF沿BF對折,得到△BPF,延長FP交BA延長線于點Q,下列結(jié)論正確的個數(shù)是( 。
①AE=BF;②AE⊥BF;③sin∠BQP= ;④S四邊形ECFG=2SBGE

A.4
B.3
C.2
D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,ABCD,點 E 為射線 FG 上一點.

(1)如圖 1,若EAF=30°,EDG=40°,則AED= °;

(2)如圖 2,當點 E FG 延長線上時,此時 CD AE 交于點 H,則∠AED、EAF、EDG之間滿足怎樣的關(guān)系,請說明你的結(jié)論;

(3)如圖 3,DI 平分∠EDC,交 AE 于點 K,交 AI 于點 I,且∠EAI:BAI=1:2,AED=22°,I=20°,求EKD 的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某工廠生產(chǎn)A、B兩種產(chǎn)品共50件,其生產(chǎn)成本與利潤如下表:


A種產(chǎn)品

B種產(chǎn)品

成本 (萬元/件)

0.6

0.9

利潤 (萬元/件)

0.2

0.4

若該工廠計劃投入資金不超過40萬元,且希望獲利超過16萬元,問工廠有哪幾種生產(chǎn)方案?哪種生產(chǎn)方案獲利潤最大?最大利潤是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB為⊙O的直徑,直線l與⊙O相切于點C,AD⊥l,垂足為D,AD交⊙O于點E,連接OC、BE.若AE=6,OA=5,則線段DC的長為

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】本題8分如圖,矩形ABCD中,AB=2,BC=5,E、P分別在AD、BC上,且DE=BP=1

(1)BEC的形狀,并說明理由;

(2)判斷四邊形EFPH是什么特殊四邊形?并證明你的判斷。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形EFGH內(nèi)接于△ABC,且邊FG落在BC上,若AD⊥BC,BC=3,AD=2,EF= EH,那么EH的長為

查看答案和解析>>

同步練習(xí)冊答案